Summary:

Summary:

1. What are large cardinals?

Summary:

1. What are large cardinals?

Forcings which preserve large cardinals:

Summary:

1. What are large cardinals?

Forcings which preserve large cardinals:

2. Failures of GCH.

Summary:

1. What are large cardinals?

Forcings which preserve large cardinals:

2. Failures of GCH.

3. Cardinal characteristics at large cardinals.

Summary:

1. What are large cardinals?

Forcings which preserve large cardinals:

2. Failures of GCH.

- 3. Cardinal characteristics at large cardinals.
- 4. L-like universes and large cardinals.

Summary:

1. What are large cardinals?

Forcings which preserve large cardinals:

2. Failures of GCH.

- 3. Cardinal characteristics at large cardinals.
- 4. L-like universes and large cardinals.

Not covered: Forcings which use large cardinals, but destroy largeness (Singular Cardinal Hypothesis)

 κ is inaccessible iff: $\kappa > \aleph_0$ κ is regular $\lambda < \kappa \rightarrow 2^\lambda < \kappa$

$$\begin{split} \kappa \ & \text{is inaccessible iff:} \\ \kappa > \aleph_0 \\ \kappa \ & \text{is regular} \\ \lambda < \kappa \to 2^\lambda < \kappa \end{split}$$

 κ inaccessible implies V_{κ} is a model of ZFC

$$\begin{split} \kappa \ & \text{is inaccessible iff:} \\ \kappa > \aleph_0 \\ \kappa \ & \text{is regular} \\ \lambda < \kappa \to 2^\lambda < \kappa \end{split}$$

 κ inaccessible implies V_{κ} is a model of ZFC

 κ is *measurable* iff:

 $\kappa > \aleph_0$

 \exists nonprincipal, κ -complete ultrafilter on κ

Embeddings:

Embeddings:

V = universe of all sets M an inner model (transitive class satisfying ZFC, containing Ord)

Embeddings:

V = universe of all sets M an inner model (transitive class satisfying ZFC, containing Ord)

 $j: V \rightarrow M$ is an *embedding* iff:

j is not the identity

j preserves the truth of formulas with parameters

Embeddings:

V = universe of all sets M an inner model (transitive class satisfying ZFC, containing Ord)

 $j: V \rightarrow M$ is an *embedding* iff: j is not the identity j preserves the truth of formulas with parameters

Critical point of *j* is the least κ , $j(\kappa) \neq \kappa$

Embeddings:

V = universe of all sets M an inner model (transitive class satisfying ZFC, containing Ord)

 $j: V \rightarrow M$ is an *embedding* iff: j is not the identity j preserves the truth of formulas with parameters

Critical point of *j* is the least κ , $j(\kappa) \neq \kappa$

Idea: κ is "large" iff κ is the critical point of an embedding $j: V \to M$ where M is "large"

Suppose that κ is the critical point of $j: V \to M$

Suppose that κ is the critical point of $j: V \to M$

```
\kappa is H(\lambda)-strong iff H(\lambda) \subseteq M
```

Suppose that κ is the critical point of $j: V \to M$

 κ is $H(\lambda)$ -strong iff $H(\lambda) \subseteq M$

 κ is λ -supercompact iff $M^{\lambda} \subseteq M$

Suppose that κ is the critical point of $j: V \to M$

 κ is $H(\lambda)$ -strong iff $H(\lambda) \subseteq M$

 κ is λ -supercompact iff $M^{\lambda} \subseteq M$

Fact: Measurable = $H(\kappa^+)$ -strong = κ -supercompact.

Suppose that κ is the critical point of $j: V \to M$

 κ is $H(\lambda)$ -strong iff $H(\lambda) \subseteq M$

 κ is λ -supercompact iff $M^{\lambda} \subseteq M$

Fact: Measurable = $H(\kappa^+)$ -strong = κ -supercompact.

Kunen: No $j: V \rightarrow M$ witnesses $H(\lambda)$ -strength for all λ , i.e., M cannot equal V

Suppose that κ is the critical point of $j: V \to M$

 κ is $H(\lambda)$ -strong iff $H(\lambda) \subseteq M$

 κ is λ -supercompact iff $M^{\lambda} \subseteq M$

Fact: Measurable = $H(\kappa^+)$ -strong = κ -supercompact.

Kunen: No $j: V \to M$ witnesses $H(\lambda)$ -strength for all λ , i.e., M cannot equal V

However: κ could be $H(\lambda)$ -strong for all λ (i.e., the critical point of embeddings with arbitrary degrees of strength)

Larger cardinals:

Larger cardinals:

Again suppose κ is the critical point of $j: V \to M$

Larger cardinals:

Again suppose κ is the critical point of $j: V \rightarrow M$

 κ is superstrong iff $H(j(\kappa)) \subseteq M$

Larger cardinals:

Again suppose κ is the critical point of $j: V \rightarrow M$

 κ is superstrong iff $H(j(\kappa)) \subseteq M$

 κ is hyperstrong iff $H(j(\kappa)^+) \subseteq M$

Larger cardinals:

Again suppose κ is the critical point of j:V o M

 κ is superstrong iff $H(j(\kappa)) \subseteq M$

 κ is hyperstrong iff $H(j(\kappa)^+) \subseteq M$

 κ is *n*-superstrong iff $H(j^n(\kappa)) \subseteq M$ (*n* finite)

Larger cardinals:

Again suppose κ is the critical point of $j: V \to M$

 κ is superstrong iff $H(j(\kappa)) \subseteq M$

 κ is hyperstrong iff $H(j(\kappa)^+) \subseteq M$

 κ is *n*-superstrong iff $H(j^n(\kappa)) \subseteq M$ (*n* finite)

 κ is ω -superstrong iff $H(j^{\omega}(\kappa)) \subseteq M$

Larger cardinals:

Again suppose κ is the critical point of $j: V \to M$

- κ is superstrong iff $H(j(\kappa)) \subseteq M$
- κ is hyperstrong iff $H(j(\kappa)^+) \subseteq M$
- κ is *n*-superstrong iff $H(j^n(\kappa)) \subseteq M$ (*n* finite)
- κ is ω -superstrong iff $H(j^{\omega}(\kappa)) \subseteq M$

Kunen: More than ω -superstrong is inconsistent (cannot have $H(j^{\omega}(\kappa)^+) \subseteq M$

First Reason:

Set theory, even with large cardinals, is *incomplete*: For many φ , both ZFC + φ and ZFC + φ are consistent

First Reason:

Set theory, even with large cardinals, is *incomplete*: For many φ , both ZFC + φ and ZFC + φ are consistent

But set theory with large cardinals seems to be *consistency complete*:

First Reason:

Set theory, even with large cardinals, is *incomplete*: For many φ , both ZFC + φ and ZFC + φ are consistent

But set theory with large cardinals seems to be *consistency complete*:

For almost all φ , if φ is consistent then we have $Con(ZFC + LC) \rightarrow Con(ZFC + \varphi)$

for some large cardinal axiom LC;

First Reason:

Set theory, even with large cardinals, is *incomplete*: For many φ , both ZFC + φ and ZFC + φ are consistent

But set theory with large cardinals seems to be *consistency complete*:

For almost all φ , if φ is consistent then we have $Con(ZFC + LC) \rightarrow Con(ZFC + \varphi)$

for some large cardinal axiom LC; moreover we often get: $Con(ZFC + \varphi) \rightarrow Con(ZFC + lc)$ where lc is almost as strong as LC

First Reason:

Set theory, even with large cardinals, is *incomplete*: For many φ , both ZFC + φ and ZFC + φ are consistent

But set theory with large cardinals seems to be *consistency complete*:

For almost all φ , if φ is consistent then we have $Con(ZFC + LC) \rightarrow Con(ZFC + \varphi)$

for some large cardinal axiom LC; moreover we often get: $Con(ZFC + \varphi) \rightarrow Con(ZFC + lc)$ where lc is almost as strong as LC

Conclusion: We need large cardinals to show consistency.

Second reason:

Second reason: Forcing is interesting when there are large cardinals!

Second reason: Forcing is interesting when there are large cardinals!

Examples:

a. Failure of GCH at a measurable

 $\label{eq:second-reason} Second\ reason:\ Forcing\ is\ interesting\ when\ there\ are\ large\ cardinals!$

Examples:

a. Failure of GCH at a measurable Increasing 2^{κ} with κ -Cohen is painful,

Second reason: Forcing is interesting when there are large cardinals!

Examples:

a. Failure of GCH at a measurable Increasing 2 $^{\kappa}$ with $\kappa\text{-Cohen}$ is painful, with $\kappa\text{-Laver}$ regrettable,

Second reason: Forcing is interesting when there are large cardinals!

Examples:

a. Failure of GCH at a measurable Increasing 2^{κ} with κ -Cohen is painful, with κ -Laver regrettable, but with κ -Sacks perfect!

b. Cardinal characteristics at a measurable (new area)

 $\mathfrak{a},\mathfrak{b},\mathfrak{d},\mathfrak{e},\mathfrak{g},\mathfrak{h},\mathfrak{i},\mathfrak{m},\mathfrak{p},\mathfrak{r},\mathfrak{s},\mathfrak{t},\mathfrak{u}$

at κ .

Second reason: Forcing is interesting when there are large cardinals!

Examples:

a. Failure of GCH at a measurable Increasing 2^{κ} with κ -Cohen is painful, with κ -Laver regrettable, but with κ -Sacks perfect!

b. Cardinal characteristics at a measurable (new area)
 a, b, ∂, e, g, h, i, m, p, r, s, t, u
 at κ. Iterated forcing with uncountable supports

Second reason: Forcing is interesting when there are large cardinals!

Examples:

a. Failure of GCH at a measurable Increasing 2^{κ} with κ -Cohen is painful, with κ -Laver regrettable, but with κ -Sacks perfect!

b. Cardinal characteristics at a measurable (new area)

 $\mathfrak{a}, \mathfrak{b}, \mathfrak{d}, \mathfrak{e}, \mathfrak{g}, \mathfrak{h}, \mathfrak{i}, \mathfrak{m}, \mathfrak{p}, \mathfrak{r}, \mathfrak{s}, \mathfrak{t}, \mathfrak{u}$

at κ . Iterated forcing with uncountable supports

c. Forcing combinatorial principles at a measurable (surprises with Jensen's \Box Principle)

Second reason: Forcing is interesting when there are large cardinals!

Examples:

a. Failure of GCH at a measurable Increasing 2^{κ} with κ -Cohen is painful, with κ -Laver regrettable, but with κ -Sacks perfect!

b. Cardinal characteristics at a measurable (new area)

 $\mathfrak{a},\mathfrak{b},\mathfrak{d},\mathfrak{e},\mathfrak{g},\mathfrak{h},\mathfrak{i},\mathfrak{m},\mathfrak{p},\mathfrak{r},\mathfrak{s},\mathfrak{t},\mathfrak{u}$

at κ . Iterated forcing with uncountable supports

c. Forcing combinatorial principles at a measurable (surprises with Jensen's \Box Principle)

d. Singular cardinal problems (Prikry-type forcings)

Question: Suppose κ is a large cardinal and G is P-generic over V. Is κ still a large cardinal in V[G]?

Question: Suppose κ is a large cardinal and G is P-generic over V. Is κ still a large cardinal in V[G]? Lifting method (Silver):

Question: Suppose κ is a large cardinal and G is P-generic over V. Is κ still a large cardinal in V[G]?

Lifting method (Silver):

Given $j: V \rightarrow M$ and G which is P-generic over V

Question: Suppose κ is a large cardinal and G is P-generic over V. Is κ still a large cardinal in V[G]? Lifting method (Silver): Given $j: V \to M$ and G which is P-generic over VLet P^* be j(P)

Question: Suppose κ is a large cardinal and G is P-generic over V. Is κ still a large cardinal in V[G]? Lifting method (Silver): Given $j: V \to M$ and G which is P-generic over VLet P^* be j(P)Goal: Find a G^* which is P^* -generic over M such that $j[G] \subseteq G^*$

Question: Suppose κ is a large cardinal and G is P-generic over V. Is κ still a large cardinal in V[G]? Lifting method (Silver): Given $j: V \to M$ and G which is P-generic over VLet P^* be j(P)Goal: Find a G^* which is P^* -generic over M such that $j[G] \subseteq G^*$ Then $j: V \to M$ lifts to $j^*: V[G] \to M[G^*]$, defined by $j^*(\sigma^G) = j(\sigma)^{G^*}$

Question: Suppose κ is a large cardinal and G is P-generic over V. Is κ still a large cardinal in V[G]? Lifting method (Silver): Given $j: V \to M$ and G which is P-generic over VLet P^* be j(P)Goal: Find a G^* which is P^* -generic over M such that $j[G] \subseteq G^*$ Then $j: V \to M$ lifts to $j^*: V[G] \to M[G^*]$, defined by $j^*(\sigma^G) = j(\sigma)^{G^*}$ (well-defined:

Question: Suppose κ is a large cardinal and G is P-generic over V. Is κ still a large cardinal in V[G]? Lifting method (Silver): Given $j: V \to M$ and G which is P-generic over VLet P^* be j(P)Goal: Find a G^* which is P^* -generic over M such that $j[G] \subseteq G^*$ Then $j: V \to M$ lifts to $j^*: V[G] \to M[G^*]$, defined by $j^*(\sigma^G) = j(\sigma)^{G^*}$ (well-defined: $\sigma_0^G = \sigma_1^G \to p \Vdash \sigma_0 = \sigma_1$ some

 $p \in G \rightarrow j(p) \Vdash j(\sigma_0) = j(\sigma_1)$ some $p \in G \rightarrow j(\sigma_0)^{G^*} = j(\sigma_1)^{G^*}$ as $j[G] \subseteq G^*$;

Question: Suppose κ is a large cardinal and G is P-generic over V. Is κ still a large cardinal in V[G]?

Lifting method (Silver):

Given $j: V \rightarrow M$ and G which is P-generic over V

Let P^* be j(P)

Goal: Find a G^* which is P^* -generic over M such that $j[G] \subseteq G^*$ Then $j: V \to M$ lifts to $j^*: V[G] \to M[G^*]$, defined by $j^*(\sigma^G) = j(\sigma)^{G^*}$ (well-defined: $\sigma_0^G = \sigma_1^G \to p \Vdash \sigma_0 = \sigma_1$ some $p \in G \to j(p) \Vdash j(\sigma_0) = j(\sigma_1)$ some $p \in G \to j(\sigma_0)^{G^*} = j(\sigma_1)^{G^*}$ as $j[G] \subseteq G^*$; elementary by similar argument)

Question: Suppose κ is a large cardinal and G is P-generic over V. Is κ still a large cardinal in V[G]?

Lifting method (Silver):

Given $j: V \rightarrow M$ and G which is P-generic over V

Let P^* be j(P)

Goal: Find a G^* which is P^* -generic over M such that $j[G] \subseteq G^*$ Then $j: V \to M$ lifts to $j^*: V[G] \to M[G^*]$, defined by $j^*(\sigma^G) = j(\sigma)^{G^*}$ (well-defined: $\sigma_0^G = \sigma_1^G \to p \Vdash \sigma_0 = \sigma_1$ some $p \in G \to j(p) \Vdash j(\sigma_0) = j(\sigma_1)$ some $p \in G \to j(\sigma_0)^{G^*} = j(\sigma_1)^{G^*}$ as $j[G] \subseteq G^*$; elementary by similar argument)

If G^* belongs to V[G] then κ is still measurable (and maybe more) in V[G]

Question: Suppose κ is a large cardinal and G is P-generic over V. Is κ still a large cardinal in V[G]?

Lifting method (Silver):

Given $j: V \rightarrow M$ and G which is P-generic over V

Let P^* be j(P)

Goal: Find a G^* which is P^* -generic over M such that $j[G] \subseteq G^*$

Then $j: V \to M$ lifts to $j^*: V[G] \to M[G^*]$, defined by $j^*(\sigma^G) = j(\sigma)^{G^*}$ (well-defined: $\sigma_0^G = \sigma_1^G \to p \Vdash \sigma_0 = \sigma_1$ some $p \in G \to j(p) \Vdash j(\sigma_0) = j(\sigma_1)$ some $p \in G \to j(\sigma_0)^{G^*} = j(\sigma_1)^{G^*}$ as $j[G] \subseteq G^*$; elementary by similar argument)

If G^* belongs to V[G] then κ is still measurable (and maybe more) in V[G]

Remark: The lifting method is the most common, but *not* the only way to preserve large cardinals

To apply the lifting method often need a special $j: V \rightarrow M$:

To apply the lifting method often need a special $j: V \rightarrow M$:

Theorem

(Ultrapower Theorem) Suppose that κ is $H(\lambda)$ -strong, i.e., there is $j: V \to M$ with critical point κ such that $H(\lambda) \subseteq M$.

To apply the lifting method often need a special $j: V \rightarrow M$:

Theorem

(Ultrapower Theorem) Suppose that κ is $H(\lambda)$ -strong, i.e., there is $j: V \to M$ with critical point κ such that $H(\lambda) \subseteq M$. (a) (Extender ultrapower) If $\lambda \leq j(\kappa)$ then j can be modified so that: $M = \{j(f)(a) \mid f: H(\kappa) \to V, a \in H(\lambda)\}$.

To apply the lifting method often need a special $j: V \rightarrow M$:

Theorem

(Ultrapower Theorem) Suppose that κ is $H(\lambda)$ -strong, i.e., there is $j: V \to M$ with critical point κ such that $H(\lambda) \subseteq M$. (a) (Extender ultrapower) If $\lambda \leq j(\kappa)$ then j can be modified so that: $M = \{j(f)(a) \mid f: H(\kappa) \to V, a \in H(\lambda)\}$. (b) (Hyperextender ultrapower) If $\lambda = j(\kappa)^+$ then j can be modified so that: $M = \{j(f)(a) \mid f: H(\kappa^+) \to V, a \in H(j(\kappa)^+)\}$.

To apply the lifting method often need a special $j: V \rightarrow M$:

Theorem

(Ultrapower Theorem) Suppose that κ is $H(\lambda)$ -strong, i.e., there is $j: V \to M$ with critical point κ such that $H(\lambda) \subseteq M$. (a) (Extender ultrapower) If $\lambda \leq j(\kappa)$ then j can be modified so that: $M = \{j(f)(a) \mid f: H(\kappa) \to V, a \in H(\lambda)\}$. (b) (Hyperextender ultrapower) If $\lambda = j(\kappa)^+$ then j can be modified so that: $M = \{j(f)(a) \mid f: H(\kappa^+) \to V, a \in H(j(\kappa)^+)\}$. (c) (2-Hyperextender ultrapower) If $\lambda \leq j^2(\kappa)$ then j can be modified so that: $M = \{j(f)(a) \mid f: H(j(\kappa)) \to V, a \in H(\lambda)\}$.

To apply the lifting method often need a special $j: V \rightarrow M$:

Theorem

(Ultrapower Theorem) Suppose that κ is $H(\lambda)$ -strong, i.e., there is $j: V \to M$ with critical point κ such that $H(\lambda) \subseteq M$. (a) (Extender ultrapower) If $\lambda \leq j(\kappa)$ then j can be modified so that: $M = \{j(f)(a) \mid f: H(\kappa) \to V, a \in H(\lambda)\}$. (b) (Hyperextender ultrapower) If $\lambda = j(\kappa)^+$ then j can be modified so that: $M = \{j(f)(a) \mid f: H(\kappa^+) \to V, a \in H(j(\kappa)^+)\}$. (c) (2-Hyperextender ultrapower) If $\lambda \leq j^2(\kappa)$ then j can be modified so that: $M = \{j(f)(a) \mid f: H(j(\kappa)) \to V, a \in H(\lambda)\}$. (d) n + 1-Hyperextender ultrapower uses $f: H(j^n(\kappa)) \to V$; ω -Hyperextender ultrapower uses $f: H(j^\omega(\kappa)) \to V$.

To apply the lifting method often need a special $j: V \rightarrow M$:

Theorem

(Ultrapower Theorem) Suppose that κ is $H(\lambda)$ -strong, i.e., there is $j: V \to M$ with critical point κ such that $H(\lambda) \subseteq M$. (a) (Extender ultrapower) If $\lambda \leq j(\kappa)$ then j can be modified so that: $M = \{j(f)(a) \mid f: H(\kappa) \to V, a \in H(\lambda)\}$. (b) (Hyperextender ultrapower) If $\lambda = j(\kappa)^+$ then j can be modified so that: $M = \{j(f)(a) \mid f: H(\kappa^+) \to V, a \in H(j(\kappa)^+)\}$. (c) (2-Hyperextender ultrapower) If $\lambda \leq j^2(\kappa)$ then j can be modified so that: $M = \{j(f)(a) \mid f: H(j(\kappa)) \to V, a \in H(\lambda)\}$. (d) n + 1-Hyperextender ultrapower uses $f: H(j^n(\kappa)) \to V$; ω -Hyperextender ultrapower uses $f: H(j^{\omega}(\kappa)) \to V$.

Proof (a): Define $H = \{j(f)(a) \mid f : H(\kappa) \to V, a \in H(\lambda)\} \prec M$, $k : H \simeq M'$ the transitive collapse, $j' : V \to M'$ by $j' = k \circ j$. \Box

Sometimes it is easy to lift $j: V \to M$ to $j^*: V[G] \to M[G^*]$.

Sometimes it is easy to lift $j: V \to M$ to $j^*: V[G] \to M[G^*]$. Recall: $j: V \to M$ has critical point κ , G is P-generic over V, $P^* = j(P)$ and we want a G^* which is P^* -generic over M satisfying $j[G] \subseteq G^*$.

Sometimes it is easy to lift $j: V \to M$ to $j^*: V[G] \to M[G^*]$. Recall: $j: V \to M$ has critical point κ , G is P-generic over V, $P^* = j(P)$ and we want a G^* which is P^* -generic over M satisfying $j[G] \subseteq G^*$. We say that j lifts for P.

Sometimes it is easy to lift $j: V \to M$ to $j^*: V[G] \to M[G^*]$. Recall: $j: V \to M$ has critical point κ , G is P-generic over V, $P^* = j(P)$ and we want a G^* which is P^* -generic over M satisfying $j[G] \subseteq G^*$. We say that j lifts for P.

Small forcing

Sometimes it is easy to lift $j: V \to M$ to $j^*: V[G] \to M[G^*]$. Recall: $j: V \to M$ has critical point κ , G is P-generic over V, $P^* = j(P)$ and we want a G^* which is P^* -generic over M satisfying $j[G] \subseteq G^*$. We say that j lifts for P.

Small forcing

Suppose that P belongs to $H(\kappa)$ (P is small).

Sometimes it is easy to lift $j: V \to M$ to $j^*: V[G] \to M[G^*]$. Recall: $j: V \to M$ has critical point κ , G is P-generic over V, $P^* = j(P)$ and we want a G^* which is P^* -generic over M satisfying $j[G] \subseteq G^*$. We say that j lifts for P.

Small forcing

Suppose that P belongs to $H(\kappa)$ (P is small). Then j lifts for P.

Sometimes it is easy to lift $j: V \to M$ to $j^*: V[G] \to M[G^*]$. Recall: $j: V \to M$ has critical point κ , G is P-generic over V, $P^* = j(P)$ and we want a G^* which is P^* -generic over M satisfying $j[G] \subseteq G^*$. We say that j lifts for P.

Small forcing

Suppose that P belongs to $H(\kappa)$ (P is small). Then j lifts for P. Proof: $P^* = j(P) = P$.

Sometimes it is easy to lift $j: V \to M$ to $j^*: V[G] \to M[G^*]$. Recall: $j: V \to M$ has critical point κ , G is P-generic over V, $P^* = j(P)$ and we want a G^* which is P^* -generic over M satisfying $j[G] \subseteq G^*$. We say that j lifts for P.

Small forcing

Suppose that P belongs to $H(\kappa)$ (P is small). Then j lifts for P. Proof: $P^* = j(P) = P$. Take $G^* = G$.

Sometimes it is easy to lift $j: V \to M$ to $j^*: V[G] \to M[G^*]$. Recall: $j: V \to M$ has critical point κ , G is P-generic over V, $P^* = j(P)$ and we want a G^* which is P^* -generic over M satisfying $j[G] \subseteq G^*$. We say that j lifts for P.

Small forcing

Suppose that P belongs to $H(\kappa)$ (P is small). Then j lifts for P. Proof: $P^* = j(P) = P$. Take $G^* = G$. Then G^* is P^* -generic over $M \subseteq V$ and $j[G] = G \subseteq G^*$, trivially!

Sometimes it is easy to lift $j: V \to M$ to $j^*: V[G] \to M[G^*]$. Recall: $j: V \to M$ has critical point κ , G is P-generic over V, $P^* = j(P)$ and we want a G^* which is P^* -generic over M satisfying $j[G] \subseteq G^*$. We say that j lifts for P.

Small forcing

Suppose that P belongs to $H(\kappa)$ (P is small). Then j lifts for P. Proof: $P^* = j(P) = P$. Take $G^* = G$. Then G^* is P^* -generic over $M \subseteq V$ and $j[G] = G \subseteq G^*$, trivially!

 κ^+ distributive forcing

Sometimes it is easy to lift $j: V \to M$ to $j^*: V[G] \to M[G^*]$. Recall: $j: V \to M$ has critical point κ , G is P-generic over V, $P^* = j(P)$ and we want a G^* which is P^* -generic over M satisfying $j[G] \subseteq G^*$. We say that j lifts for P.

Small forcing

Suppose that P belongs to $H(\kappa)$ (P is small). Then j lifts for P. Proof: $P^* = j(P) = P$. Take $G^* = G$. Then G^* is P^* -generic over $M \subseteq V$ and $j[G] = G \subseteq G^*$, trivially!

κ^+ distributive forcing

P is κ^+ distributive iff the intersection of κ -many open dense sets is always nonempty.

Sometimes it is easy to lift $j: V \to M$ to $j^*: V[G] \to M[G^*]$. Recall: $j: V \to M$ has critical point κ , G is P-generic over V, $P^* = j(P)$ and we want a G^* which is P^* -generic over M satisfying $j[G] \subseteq G^*$. We say that j lifts for P.

Small forcing

Suppose that P belongs to $H(\kappa)$ (P is small). Then j lifts for P. Proof: $P^* = j(P) = P$. Take $G^* = G$. Then G^* is P^* -generic over $M \subseteq V$ and $j[G] = G \subseteq G^*$, trivially!

κ^+ distributive forcing

P is κ^+ distributive iff the intersection of κ -many open dense sets is always nonempty.

Theorem

Suppose that $j : V \to M$ is given by an extender ultrapower, i.e., $M = \{j(f)(a) \mid f : H(\kappa) \to V, a \in H(\lambda)\}$ for some $\lambda \leq j(\kappa)$, $H(\lambda) \subseteq M$.

Theorem

Suppose that $j : V \to M$ is given by an extender ultrapower, i.e., $M = \{j(f)(a) \mid f : H(\kappa) \to V, a \in H(\lambda)\}$ for some $\lambda \leq j(\kappa)$, $H(\lambda) \subseteq M$. Suppose that P is κ^+ distributive in V. Then j lifts for P.

Theorem

Suppose that $j : V \to M$ is given by an extender ultrapower, i.e., $M = \{j(f)(a) \mid f : H(\kappa) \to V, a \in H(\lambda)\}$ for some $\lambda \leq j(\kappa)$, $H(\lambda) \subseteq M$. Suppose that P is κ^+ distributive in V. Then j lifts for P.

Proof: Suppose that $D \in M$ is open dense on $P^* = j(P)$.

Theorem

Suppose that $j : V \to M$ is given by an extender ultrapower, i.e., $M = \{j(f)(a) \mid f : H(\kappa) \to V, a \in H(\lambda)\}$ for some $\lambda \leq j(\kappa)$, $H(\lambda) \subseteq M$. Suppose that P is κ^+ distributive in V. Then j lifts for P.

Proof: Suppose that $D \in M$ is open dense on $P^* = j(P)$. Write D = j(f)(a) where $f : H(\kappa) \to V$, $a \in H(\lambda)$.

Theorem

Suppose that $j : V \to M$ is given by an extender ultrapower, i.e., $M = \{j(f)(a) \mid f : H(\kappa) \to V, a \in H(\lambda)\}$ for some $\lambda \leq j(\kappa)$, $H(\lambda) \subseteq M$. Suppose that P is κ^+ distributive in V. Then j lifts for P.

Proof: Suppose that $D \in M$ is open dense on $P^* = j(P)$. Write D = j(f)(a) where $f : H(\kappa) \to V$, $a \in H(\lambda)$. We can assume that f(x) is open dense on P for each $x \in H(\kappa)$.

Theorem

Suppose that $j : V \to M$ is given by an extender ultrapower, i.e., $M = \{j(f)(a) \mid f : H(\kappa) \to V, a \in H(\lambda)\}$ for some $\lambda \leq j(\kappa)$, $H(\lambda) \subseteq M$. Suppose that P is κ^+ distributive in V. Then j lifts for P.

Proof: Suppose that $D \in M$ is open dense on $P^* = j(P)$. Write D = j(f)(a) where $f : H(\kappa) \to V$, $a \in H(\lambda)$. We can assume that f(x) is open dense on P for each $x \in H(\kappa)$. By the κ^+ distributivity of P there is $p \in G$ which belongs to each f(x).

Theorem

Suppose that $j : V \to M$ is given by an extender ultrapower, i.e., $M = \{j(f)(a) \mid f : H(\kappa) \to V, a \in H(\lambda)\}$ for some $\lambda \leq j(\kappa)$, $H(\lambda) \subseteq M$. Suppose that P is κ^+ distributive in V. Then j lifts for P.

Proof: Suppose that $D \in M$ is open dense on $P^* = j(P)$. Write D = j(f)(a) where $f : H(\kappa) \to V$, $a \in H(\lambda)$. We can assume that f(x) is open dense on P for each $x \in H(\kappa)$. By the κ^+ distributivity of P there is $p \in G$ which belongs to each f(x). It follows that j(p) belongs to each j(f)(y), $y \in H(j(\kappa))^M$ and therefore to j(f)(a).

Theorem

Suppose that $j : V \to M$ is given by an extender ultrapower, i.e., $M = \{j(f)(a) \mid f : H(\kappa) \to V, a \in H(\lambda)\}$ for some $\lambda \leq j(\kappa)$, $H(\lambda) \subseteq M$. Suppose that P is κ^+ distributive in V. Then j lifts for P.

Proof: Suppose that $D \in M$ is open dense on $P^* = j(P)$. Write D = j(f)(a) where $f : H(\kappa) \to V$, $a \in H(\lambda)$. We can assume that f(x) is open dense on P for each $x \in H(\kappa)$. By the κ^+ distributivity of P there is $p \in G$ which belongs to each f(x). It follows that j(p) belongs to each j(f)(y), $y \in H(j(\kappa))^M$ and therefore to j(f)(a). So j[G] "generates" the P^* -generic $G^* = \{p^* \in P^* \mid j(p) \leq p^* \text{ for some } p \text{ in } G\}$. \Box

Theorem

Suppose that $j : V \to M$ is given by an extender ultrapower, i.e., $M = \{j(f)(a) \mid f : H(\kappa) \to V, a \in H(\lambda)\}$ for some $\lambda \leq j(\kappa)$, $H(\lambda) \subseteq M$. Suppose that P is κ^+ distributive in V. Then j lifts for P.

Proof: Suppose that $D \in M$ is open dense on $P^* = j(P)$. Write D = j(f)(a) where $f : H(\kappa) \to V$, $a \in H(\lambda)$. We can assume that f(x) is open dense on P for each $x \in H(\kappa)$. By the κ^+ distributivity of P there is $p \in G$ which belongs to each f(x). It follows that j(p) belongs to each j(f)(y), $y \in H(j(\kappa))^M$ and therefore to j(f)(a). So j[G] "generates" the P^* -generic $G^* = \{p^* \in P^* \mid j(p) \leq p^* \text{ for some } p \text{ in } G\}$. \Box

So *P*-lifting is nontrivial only when *P* has size at least κ and adds κ -sequences.

Theorem

Suppose that $j : V \to M$ is given by an extender ultrapower, i.e., $M = \{j(f)(a) \mid f : H(\kappa) \to V, a \in H(\lambda)\}$ for some $\lambda \leq j(\kappa)$, $H(\lambda) \subseteq M$. Suppose that P is κ^+ distributive in V. Then j lifts for P.

Proof: Suppose that $D \in M$ is open dense on $P^* = j(P)$. Write D = j(f)(a) where $f : H(\kappa) \to V$, $a \in H(\lambda)$. We can assume that f(x) is open dense on P for each $x \in H(\kappa)$. By the κ^+ distributivity of P there is $p \in G$ which belongs to each f(x). It follows that j(p) belongs to each j(f)(y), $y \in H(j(\kappa))^M$ and therefore to j(f)(a). So j[G] "generates" the P^* -generic $G^* = \{p^* \in P^* \mid j(p) \leq p^* \text{ for some } p \text{ in } G\}$. \Box

So *P*-lifting is nontrivial only when *P* has size at least κ and adds κ -sequences. A good example is κ -Cohen forcing.

Goal: Make GCH fail at a measurable cardinal

Goal: Make GCH fail at a measurable cardinal Obvious approach: Let P be Cohen (κ, κ^{++}) Adds κ^{++} -many κ -Cohen sets

Goal: Make GCH fail at a measurable cardinal Obvious approach: Let P be Cohen (κ, κ^{++}) Adds κ^{++} -many κ -Cohen sets Conditions are partial functions of size $< \kappa$ from $\kappa \times \kappa^{++}$ to 2

Goal: Make GCH fail at a measurable cardinal Obvious approach: Let P be Cohen (κ, κ^{++}) Adds κ^{++} -many κ -Cohen sets Conditions are partial functions of size $< \kappa$ from $\kappa \times \kappa^{++}$ to 2 Want $j: V \to M$ that lifts for P. Then for P-generic G we have $j^*: V[G] \to M^*$, witnessing that κ is measurable in V[G], and moreover GCH fails at κ in V[G].

Goal: Make GCH fail at a measurable cardinal Obvious approach: Let P be Cohen (κ, κ^{++}) Adds κ^{++} -many κ -Cohen sets Conditions are partial functions of size $< \kappa$ from $\kappa \times \kappa^{++}$ to 2 Want $j: V \to M$ that lifts for P. Then for P-generic G we have $j^*: V[G] \to M^*$, witnessing that κ is measurable in V[G], and moreover GCH fails at κ in V[G].

Easier lifting problem: $P = Cohen(\kappa, 1)$, i.e. κ -Cohen forcing.

Goal: Make GCH fail at a measurable cardinal Obvious approach: Let P be Cohen (κ, κ^{++}) Adds κ^{++} -many κ -Cohen sets Conditions are partial functions of size $< \kappa$ from $\kappa \times \kappa^{++}$ to 2 Want $j: V \to M$ that lifts for P. Then for P-generic G we have $j^*: V[G] \to M^*$, witnessing that κ is measurable in V[G], and moreover GCH fails at κ in V[G]. Easier lifting problem: $P = \text{Cohen}(\kappa, 1)$, i.e. κ -Cohen forcing.

Theorem

Bad news!

Let P be κ -Cohen forcing. Then no $j: V \to M$ lifts for P.

Here is the problem:

Here is the problem: Suppose that $C \subseteq \kappa$ is generic for κ -Cohen

Here is the problem: Suppose that $C \subseteq \kappa$ is generic for κ -Cohen Want to lift $j: V \to M$ to $j^*: V[C] \to M[C^*]$

Here is the problem: Suppose that $C \subseteq \kappa$ is generic for κ -Cohen Want to lift $j: V \to M$ to $j^*: V[C] \to M[C^*]$ Want to find C^* which is $j(\kappa)$ -Cohen generic over M and "extends" C, i.e., such that $C = C^* \cap \kappa$

Here is the problem: Suppose that $C \subseteq \kappa$ is generic for κ -Cohen Want to lift $j: V \to M$ to $j^*: V[C] \to M[C^*]$ Want to find C^* which is $j(\kappa)$ -Cohen generic over M and "extends" C, i.e., such that $C = C^* \cap \kappa$ Impossible! Proper initial segments of C^* must belong to M, but Cdoes not even belong to V!

Here is the problem: Suppose that $C \subseteq \kappa$ is generic for κ -Cohen Want to lift $j: V \to M$ to $j^*: V[C] \to M[C^*]$ Want to find C^* which is $j(\kappa)$ -Cohen generic over M and "extends" C, i.e., such that $C = C^* \cap \kappa$ Impossible! Proper initial segments of C^* must belong to M, but Cdoes not even belong to V! Need the forcing to add C^* to be defined not in M but in a model that *already has* C

Here is the problem: Suppose that $C \subseteq \kappa$ is generic for κ -Cohen Want to lift $j: V \to M$ to $j^*: V[C] \to M[C^*]$ Want to find C^* which is $j(\kappa)$ -Cohen generic over M and "extends" C, i.e., such that $C = C^* \cap \kappa$ Impossible! Proper initial segments of C^* must belong to M, but Cdoes not even belong to V!

Need the forcing to add C^* to be defined not in M but in a model that *already has* C

Solution: Force not just at $\kappa,$ but at all inaccessible $\alpha \leq \kappa,$ via an iteration

$$P = P(\alpha_0) * P(\alpha_1) * \cdots * P(\kappa)$$

where $P(\alpha)$ denotes α -Cohen forcing.

Here is the problem:

Suppose that $C \subseteq \kappa$ is generic for κ -Cohen

Want to lift $j: V \to M$ to $j^*: V[C] \to M[C^*]$

Want to find C^* which is $j(\kappa)$ -Cohen generic over M and "extends" C, i.e., such that $C = C^* \cap \kappa$

Impossible! Proper initial segments of C^* must belong to M, but C does not even belong to V!

Need the forcing to add C^* to be defined not in M but in a model that *already has* C

Solution: Force not just at $\kappa,$ but at all inaccessible $\alpha \leq \kappa,$ via an iteration

$$P = P(\alpha_0) * P(\alpha_1) * \cdots * P(\kappa)$$

where $P(\alpha)$ denotes α -Cohen forcing.

Lift not just $P(\kappa) = \kappa$ -Cohen forcing, but the entire iteration P ("Prepare below κ ")

What is the iteration

$$P = P(\alpha_0) * P(\alpha_1) * \cdots * P(\kappa) ?$$

What is the iteration

$$P = P(\alpha_0) * P(\alpha_1) * \cdots * P(\kappa) ?$$

Use Easton support, i.e., for p in $P = P(\alpha_0) * P(\alpha_1) * \cdots * P(\kappa)$, Support $(p) = \{i \mid p \upharpoonright i \nvDash p(\alpha_i) \text{ is trivial}\}$ has bounded intersection with each inaccessible.

What is the iteration

$$P = P(\alpha_0) * P(\alpha_1) * \cdots * P(\kappa) ?$$

Use Easton support, i.e., for p in $P = P(\alpha_0) * P(\alpha_1) * \cdots * P(\kappa)$, Support $(p) = \{i \mid p \upharpoonright i \nvDash p(\alpha_i) \text{ is trivial}\}$ has bounded intersection with each inaccessible. Then for regular λ , P factors as:

$$P(\leq \lambda) * P(> \lambda)$$

where $P(\leq \lambda)$ has "size" λ and $P(>\lambda)$ is λ^+ -closed (descending sequences of length λ have lower bounds).

What is the iteration

$$P = P(\alpha_0) * P(\alpha_1) * \cdots * P(\kappa) ?$$

Use Easton support, i.e., for p in $P = P(\alpha_0) * P(\alpha_1) * \cdots * P(\kappa)$, Support $(p) = \{i \mid p \upharpoonright i \nvDash p(\alpha_i) \text{ is trivial}\}$ has bounded intersection with each inaccessible. Then for regular λ , P factors as:

$$P(\leq \lambda) * P(> \lambda)$$

where $P(\leq \lambda)$ has "size" λ and $P(>\lambda)$ is λ^+ -closed (descending sequences of length λ have lower bounds). As in Easton's theorem, this gives cofinality preservation.

Theorem

Assume GCH. Let $P = P(\leq \kappa) = P(\alpha_0) * P(\alpha_1) * \cdots * P(\kappa)$ be the iteration of α -Cohen for inaccessible $\alpha \leq \kappa$ described above.

Theorem

Assume GCH. Let $P = P(\leq \kappa) = P(\alpha_0) * P(\alpha_1) * \cdots * P(\kappa)$ be the iteration of α -Cohen for inaccessible $\alpha \leq \kappa$ described above. Suppose that $j : V \to M$ is an extender ultrapower witnessing the $H(\lambda)$ -strength of κ for some regular λ less than the least inaccessible above κ . Then j lifts for P.

Let $C(\leq \kappa) = C(\alpha_0) * C(\alpha_1) * \cdots * C(\kappa)$ denote the *P*-generic and $V^* = V[C(\leq \kappa)]$

Let $C(\leq \kappa) = C(\alpha_0) * C(\alpha_1) * \cdots * C(\kappa)$ denote the *P*-generic and $V^* = V[C(\leq \kappa)]$ We want to lift $j : V \to M$ to $j^* : V[C(\leq \kappa)] \to M[C^*(\leq \kappa) * C^*(\beta_0) * C^*(\beta_1) * \cdots * C^*(j(\kappa))]$ where the β_i 's are the inaccessibles of *M* between κ and $j(\kappa)$ and the C^* 's are chosen in $V^* = V[C(\leq \kappa)]$

Let $C(\leq \kappa) = C(\alpha_0) * C(\alpha_1) * \cdots * C(\kappa)$ denote the *P*-generic and $V^* = V[C(\leq \kappa)]$ We want to lift $j: V \to M$ to $j^*: V[C(\leq \kappa)] \to M[C^*(\leq \kappa) * C^*(\beta_0) * C^*(\beta_1) * \cdots * C^*(j(\kappa))]$ where the β_i 's are the inaccessibles of *M* between κ and $j(\kappa)$ and the *C**'s are chosen in $V^* = V[C(\leq \kappa)]$ Set $C^*(\leq \kappa) = C(\leq \kappa)$

Let $C(\leq \kappa) = C(\alpha_0) * C(\alpha_1) * \cdots * C(\kappa)$ denote the *P*-generic and $V^* = V[C(\leq \kappa)]$ We want to lift $j: V \to M$ to $j^*: V[C(\leq \kappa)] \to M[C^*(\leq \kappa) * C^*(\beta_0) * C^*(\beta_1) * \cdots * C^*(j(\kappa))]$ where the β_i 's are the inaccessibles of *M* between κ and $j(\kappa)$ and the C^* 's are chosen in $V^* = V[C(\leq \kappa)]$ Set $C^*(\leq \kappa) = C(\leq \kappa)$ Middle part: Take $\langle C^*(\beta) | \kappa < \beta < j(\kappa) \rangle = C^*(\kappa, j(\kappa))$ to be any generic in V^*

Let $C(\leq \kappa) = C(\alpha_0) * C(\alpha_1) * \cdots * C(\kappa)$ denote the *P*-generic and $V^* = V[C(\leq \kappa)]$ We want to lift $j: V \to M$ to $j^*: V[C(\leq \kappa)] \to M[C^*(\leq \kappa) * C^*(\beta_0) * C^*(\beta_1) * \cdots * C^*(j(\kappa))]$ where the β_i 's are the inaccessibles of *M* between κ and $j(\kappa)$ and the C^* 's are chosen in $V^* = V[C(\leq \kappa)]$ Set $C^*(\leq \kappa) = C(\leq \kappa)$ Middle part: Take $\langle C^*(\beta) | \kappa < \beta < j(\kappa) \rangle = C^*(\kappa, j(\kappa))$ to be any generic in V^* (why are there any ???)

Let $C(\leq \kappa) = C(\alpha_0) * C(\alpha_1) * \cdots * C(\kappa)$ denote the *P*-generic and $V^* = V[C(<\kappa)]$ We want to lift $i: V \to M$ to $j^*: V[C(<\kappa)] \rightarrow M[C^*(<\kappa) * C^*(\beta_0) * C^*(\beta_1) * \cdots * C^*(j(\kappa))]$ where the β_i 's are the inaccessibles of M between κ and $j(\kappa)$ and the C^{*'}s are chosen in $V^* = V[C(\leq \kappa)]$ Set $C^*(<\kappa) = C(<\kappa)$ Middle part: Take $\langle C^*(\beta) | \kappa < \beta < j(\kappa) \rangle = C^*(\kappa, j(\kappa))$ to be any generic in V^* (why are there any ???) Last lift: Take $C^*(j(\kappa))$ to be any generic in V^* for $j(\kappa)$ -Cohen forcing of $M[C^*(\leq \kappa) * C^*(\kappa, j(\kappa))]$ containing the condition $C(\kappa) = C^*(\kappa)$

Let $C(\leq \kappa) = C(\alpha_0) * C(\alpha_1) * \cdots * C(\kappa)$ denote the *P*-generic and $V^* = V[C(<\kappa)]$ We want to lift $i: V \to M$ to $j^*: V[C(<\kappa)] \rightarrow M[C^*(<\kappa) * C^*(\beta_0) * C^*(\beta_1) * \cdots * C^*(j(\kappa))]$ where the β_i 's are the inaccessibles of M between κ and $j(\kappa)$ and the C^{*'}s are chosen in $V^* = V[C(\leq \kappa)]$ Set $C^*(<\kappa) = C(<\kappa)$ Middle part: Take $\langle C^*(\beta) | \kappa < \beta < j(\kappa) \rangle = C^*(\kappa, j(\kappa))$ to be any generic in V^* (why are there any ???) Last lift: Take $C^*(j(\kappa))$ to be any generic in V^* for $j(\kappa)$ -Cohen forcing of $M[C^*(<\kappa) * C^*(\kappa, i(\kappa))]$ containing the condition $C(\kappa) = C^*(\kappa)$ (why are there any ???).

Explaining the two ???'s

Explaining the two ???'s $j^*: V[C(\leq \kappa)] \rightarrow M[C(\leq \kappa) * C^*(\kappa, j(\kappa))???*C^*(j(\kappa))???]$

Explaining the two ???'s $j^*: V[C(\leq \kappa)] \rightarrow M[C(\leq \kappa) * C^*(\kappa, j(\kappa))???*C^*(j(\kappa))???]$ Middle part: We want a generic $C^*(\kappa, j(\kappa))$ in $V^* = V[C(\leq \kappa)]$ for $P^*(\kappa, j(\kappa)) = P^*(\beta_0) * P^*(\beta_1) * \cdots$, a forcing which is β_0 -closed and has $j(\kappa)$ -many maximal antichains in $M[C(\leq \kappa)]$.

Explaining the two ???'s $j^*: V[C(\leq \kappa)] \rightarrow M[C(\leq \kappa) * C^*(\kappa, j(\kappa))???*C^*(j(\kappa))???]$ Middle part: We want a generic $C^*(\kappa, j(\kappa))$ in $V^* = V[C(\leq \kappa)]$ for $P^*(\kappa, j(\kappa)) = P^*(\beta_0) * P^*(\beta_1) * \cdots$, a forcing which is β_0 -closed and has $j(\kappa)$ -many maximal antichains in $M[C(\leq \kappa)]$. Recall that the original $j: V \rightarrow M$ was an extender ultrapower witnessing $H(\lambda)$ -strength for some regular $\lambda < \beta_0$.

Explaining the two ???'s Explaining the two ???'s $j^*: V[C(\leq \kappa)] \rightarrow M[C(\leq \kappa) * C^*(\kappa, j(\kappa))???*C^*(j(\kappa))???]$ Middle part: We want a generic $C^*(\kappa, j(\kappa))$ in $V^* = V[C(\leq \kappa)]$ for $P^*(\kappa, j(\kappa)) = P^*(\beta_0) * P^*(\beta_1) * \cdots$, a forcing which is β_0 -closed and has $j(\kappa)$ -many maximal antichains in $M[C(\leq \kappa)]$. Recall that the original $j: V \rightarrow M$ was an extender ultrapower witnessing $H(\lambda)$ -strength for some regular $\lambda < \beta_0$. Claim. (a) $M^{\kappa} \cap V \subseteq M$.

Explaining the two ???'s $j^*: V[C(\leq \kappa)] \rightarrow M[C(\leq \kappa) * C^*(\kappa, j(\kappa))???*C^*(j(\kappa))???]$ Middle part: We want a generic $C^*(\kappa, j(\kappa))$ in $V^* = V[C(<\kappa)]$ for $P^*(\kappa, i(\kappa)) = P^*(\beta_0) * P^*(\beta_1) * \cdots$, a forcing which is β_0 -closed and has $j(\kappa)$ -many maximal antichains in $M[C(\leq \kappa)]$. Recall that the original $i: V \to M$ was an extender ultrapower witnessing $H(\lambda)$ -strength for some regular $\lambda < \beta_0$. Claim. (a) $M^{\kappa} \cap V \subset M$. (b) $i(\kappa)$ can be written in V as the union of κ^+ -many subsets, each an element of M of size λ in M.

Explaining the two ???'s $j^*: V[C(\leq \kappa)] \rightarrow M[C(\leq \kappa) * C^*(\kappa, j(\kappa))???*C^*(j(\kappa))???]$ Middle part: We want a generic $C^*(\kappa, j(\kappa))$ in $V^* = V[C(<\kappa)]$ for $P^*(\kappa, i(\kappa)) = P^*(\beta_0) * P^*(\beta_1) * \cdots$, a forcing which is β_0 -closed and has $j(\kappa)$ -many maximal antichains in $M[C(\leq \kappa)]$. Recall that the original $i: V \to M$ was an extender ultrapower witnessing $H(\lambda)$ -strength for some regular $\lambda < \beta_0$. Claim. (a) $M^{\kappa} \cap V \subset M$. (b) $i(\kappa)$ can be written in V as the union of κ^+ -many subsets, each an element of M of size λ in M.

Claim. (a) $M^{\kappa} \cap V \subseteq M$.

Claim. (a) $M^{\kappa} \cap V \subseteq M$. (b) $j(\kappa)$ can be written in V as the union of κ^+ -many subsets, each an element of M of size λ in M. Given (a) and (b): The κ^+ -cc of $P(\leq \kappa)$ implies that (a) also holds for the models $M[C(\leq \kappa)], V[C(\leq \kappa)]$: $M[C(\leq \kappa)]^{\kappa} \cap V[C(\leq \kappa)] \subseteq M[C(\leq \kappa)]$

Claim. (a) $M^{\kappa} \cap V \subseteq M$. (b) $j(\kappa)$ can be written in V as the union of κ^+ -many subsets, each an element of M of size λ in M. Given (a) and (b): The κ^+ -cc of $P(\leq \kappa)$ implies that (a) also holds for the models $M[C(\leq \kappa)], V[C(\leq \kappa)]$: $M[C(\leq \kappa)]^{\kappa} \cap V[C(\leq \kappa)] \subseteq M[C(\leq \kappa)]$ Therefore $P^*(\kappa, j(\kappa))$ is κ^+ -closed in $V[C(\leq \kappa)]$.

Claim. (a) $M^{\kappa} \cap V \subset M$. (b) $i(\kappa)$ can be written in V as the union of κ^+ -many subsets, each an element of M of size λ in M. Given (a) and (b): The κ^+ -cc of $P(\leq \kappa)$ implies that (a) also holds for the models $M[C(<\kappa)]$, $V[C(<\kappa)]$: $M[C(<\kappa)]^{\kappa} \cap V[C(<\kappa)] \subset M[C(<\kappa)]$ Therefore $P^*(\kappa, j(\kappa))$ is κ^+ -closed in $V[C(\leq \kappa)]$. But then (b) and the λ^+ closure of $P^*(\kappa, j(\kappa))$ in $M[C(<\kappa)]$ implies that we can build a $P^*(\kappa, i(\kappa))$ -generic in κ^+ steps.

Proof of (a): $M^{\kappa} \cap V \subseteq M$ Given $j(f_0)(a_0), j(f_1)(a_1), \cdots$ of length κ define $f : H(\kappa) \to V$ by $f(\langle x_0, x_1, \cdots \rangle = \langle f_0(x_0), f_1(x_1), \cdots \rangle;$

Proof of (a): $M^{\kappa} \cap V \subseteq M$ Given $j(f_0)(a_0), j(f_1)(a_1), \cdots$ of length κ define $f : H(\kappa) \to V$ by $f(\langle x_0, x_1, \cdots \rangle = \langle f_0(x_0), f_1(x_1), \cdots \rangle$; then $j(f)(\langle a_0, a_1, \cdots \rangle)$ is the κ -sequence of the $j(f_i)(a_i)$'s and $\langle a_0, a_1, \cdots \rangle$ is an element of $H(\lambda)$.

Proof of (a): $M^{\kappa} \cap V \subseteq M$ Given $j(f_0)(a_0), j(f_1)(a_1), \cdots$ of length κ define $f : H(\kappa) \to V$ by $f(\langle x_0, x_1, \cdots \rangle = \langle f_0(x_0), f_1(x_1), \cdots \rangle$; then $j(f)(\langle a_0, a_1, \cdots \rangle)$ is the κ -sequence of the $j(f_i)(a_i)$'s and $\langle a_0, a_1, \cdots \rangle$ is an element of $H(\lambda)$. Proof of (b): $j(\kappa)$ can be written in V as the union of κ^+ -many subsets, each an element of M of size λ in M

Proof of (a): $M^{\kappa} \cap V \subset M$ Given $i(f_0)(a_0), i(f_1)(a_1), \cdots$ of length κ define $f: H(\kappa) \to V$ by $f(\langle x_0, x_1, \cdots \rangle = \langle f_0(x_0), f_1(x_1), \cdots \rangle$; then $j(f)(\langle a_0, a_1, \cdots \rangle)$ is the κ -sequence of the $j(f_i)(a_i)$'s and $\langle a_0, a_1, \cdots \rangle$ is an element of $H(\lambda)$. Proof of (b): $i(\kappa)$ can be written in V as the union of κ^+ -many subsets, each an element of M of size λ in M Every ordinal less than $i(\kappa)$ is of the form i(f)(a) where $f: H(\kappa) \to V$ and $a \in H(\lambda)$; but we may assume $f: H(\kappa) \to \kappa$ (simply redefine f(x) to be 0 if f(x) is not an ordinal $< \kappa$; this won't affect i(f)(a)).

Proof of (a): $M^{\kappa} \cap V \subset M$ Given $j(f_0)(a_0), j(f_1)(a_1), \cdots$ of length κ define $f : H(\kappa) \to V$ by $f(\langle x_0, x_1, \cdots \rangle = \langle f_0(x_0), f_1(x_1), \cdots \rangle$; then $i(f)(\langle a_0, a_1, \cdots \rangle)$ is the κ -sequence of the $j(f_i)(a_i)$'s and $\langle a_0, a_1, \cdots \rangle$ is an element of $H(\lambda)$. Proof of (b): $i(\kappa)$ can be written in V as the union of κ^+ -many subsets, each an element of M of size λ in M Every ordinal less than $j(\kappa)$ is of the form j(f)(a) where $f: H(\kappa) \to V$ and $a \in H(\lambda)$; but we may assume $f: H(\kappa) \to \kappa$ (simply redefine f(x) to be 0 if f(x) is not an ordinal $< \kappa$; this won't affect i(f)(a)). So $i(\kappa)$ is the union of the sets $A(f) = \{i(f)(a) \mid a \in H(\lambda)\}, f : H(\kappa) \to \kappa$, each of which has size λ in M by GCH, and again by GCH there are only κ^+ -many such sets.

The second ???:

 $j^*: V[C(<\kappa) * C(\kappa)] \to M[C(\le \kappa) * C^*(\kappa, j(\kappa)) * C^*(j(\kappa))???]$

The second ???:

 $j^*: V[C(<\kappa) * C(\kappa)] \to M[C(\le\kappa) * C^*(\kappa, j(\kappa)) * C^*(j(\kappa))???]$

We need a generic in V^* for $P^*(j(\kappa)) = \text{the } j(\kappa)$ -Cohen forcing of $M[C(\leq \kappa) * C^*(\kappa, j(\kappa))]$ containing the condition $C(\kappa)$.

The second ???:

 $j^*: V[C(<\kappa) * C(\kappa)] \to M[C(\le\kappa) * C^*(\kappa, j(\kappa)) * C^*(j(\kappa))???]$ We need a generic in V^* for $P^*(j(\kappa)) = \text{the } j(\kappa)$ -Cohen forcing of $M[C(\le\kappa) * C^*(\kappa, j(\kappa))]$ containing the condition $C(\kappa)$. This is similar to the previous case.

The second ???:

 $\begin{aligned} j^*: V[C(<\kappa) * C(\kappa)] &\to M[C(\le\kappa) * C^*(\kappa, j(\kappa)) * C^*(j(\kappa))???] \\ \text{We need a generic in } V^* \text{ for } P^*(j(\kappa)) &= \text{ the } j(\kappa)\text{-Cohen forcing of } \\ M[C(\le\kappa) * C^*(\kappa, j(\kappa))] \text{ containing the condition } C(\kappa). \\ \text{This is similar to the previous case. We have:} \\ (a) M[C^*(< j(\kappa))]^{\kappa} \cap V^* \subseteq M[C^*(< j(\kappa))]. \end{aligned}$

The second ???:

 $j^*: V[C(<\kappa) * C(\kappa)] \to M[C(\le\kappa) * C^*(\kappa, j(\kappa)) * C^*(j(\kappa))???]$ We need a generic in V^* for $P^*(j(\kappa)) =$ the $j(\kappa)$ -Cohen forcing of $M[C(\le\kappa) * C^*(\kappa, j(\kappa))]$ containing the condition $C(\kappa)$. This is similar to the previous case. We have: (a) $M[C^*(<j(\kappa))]^{\kappa} \cap V^* \subseteq M[C^*(<j(\kappa))].$ (b) $P^*(j(\kappa))$ has $(j(\kappa)^+)^{M[C^*(<j(\kappa))]} = j(\kappa^+)$ many maximal antichains in $M[C^*(<j(\kappa))]$ and $j(\kappa^+)$ can be written in V^* as the prior of κ^+ prove whether a schement of M of size λ is M.

union of κ^+ many subsets, each an element of M of size λ in M.

The second ???:

 $j^*: V[C(<\kappa) * C(\kappa)] \rightarrow M[C(<\kappa) * C^*(\kappa, j(\kappa)) * C^*(j(\kappa))???]$ We need a generic in V^* for $P^*(i(\kappa)) = \text{the } i(\kappa)$ -Cohen forcing of $M[C(<\kappa) * C^*(\kappa, j(\kappa))]$ containing the condition $C(\kappa)$. This is similar to the previous case. We have: (a) $M[C^*(\langle j(\kappa) \rangle)]^{\kappa} \cap V^* \subseteq M[C^*(\langle j(\kappa) \rangle)].$ (b) $P^*(i(\kappa))$ has $(i(\kappa)^+)^{M[C^*(\langle j(\kappa) \rangle)]} = i(\kappa^+)$ many maximal antichains in $M[C^*(\langle i(\kappa) \rangle)]$ and $i(\kappa^+)$ can be written in V^* as the union of κ^+ many subsets, each an element of M of size λ in M. For (a) we need only show $\operatorname{Ord}^{\kappa} \cap V^* \subseteq M[C^*(\langle j(\kappa) \rangle)]$, which follows from $\operatorname{Ord}^{\kappa} \cap V^* \subset M[C^*(<\kappa)].$

The second ???:

 $j^*: V[C(<\kappa) * C(\kappa)] \rightarrow M[C(\le\kappa) * C^*(\kappa, j(\kappa)) * C^*(j(\kappa))???]$ We need a generic in V^* for $P^*(i(\kappa)) =$ the $i(\kappa)$ -Cohen forcing of $M[C(<\kappa) * C^*(\kappa, j(\kappa))]$ containing the condition $C(\kappa)$. This is similar to the previous case. We have: (a) $M[C^*(\langle i(\kappa))]^{\kappa} \cap V^* \subseteq M[C^*(\langle i(\kappa))].$ (b) $P^*(i(\kappa))$ has $(i(\kappa)^+)^{M[C^*(\langle j(\kappa) \rangle)]} = i(\kappa^+)$ many maximal antichains in $M[C^*(\langle i(\kappa)\rangle)]$ and $j(\kappa^+)$ can be written in V^* as the union of κ^+ many subsets, each an element of M of size λ in M. For (a) we need only show $\operatorname{Ord}^{\kappa} \cap V^* \subseteq M[C^*(\langle j(\kappa) \rangle)]$, which follows from $\operatorname{Ord}^{\kappa} \cap V^* \subseteq M[C^*(\leq \kappa)]$. For (b), note that every $\alpha < j(\kappa^+)$ can be written as j(f)(a) with $f: H(\kappa) \to \kappa^+$, $a \in H(\lambda)$, and there are still only κ^+ -many such f's.

The second ???:

 $j^*: V[C(<\kappa) * C(\kappa)] \rightarrow M[C(\le\kappa) * C^*(\kappa, j(\kappa)) * C^*(j(\kappa))???]$ We need a generic in V^* for $P^*(i(\kappa)) =$ the $i(\kappa)$ -Cohen forcing of $M[C(<\kappa) * C^*(\kappa, j(\kappa))]$ containing the condition $C(\kappa)$. This is similar to the previous case. We have: (a) $M[C^*(\langle j(\kappa) \rangle]^{\kappa} \cap V^* \subseteq M[C^*(\langle j(\kappa) \rangle])$. (b) $P^*(i(\kappa))$ has $(i(\kappa)^+)^{M[C^*(\langle j(\kappa) \rangle)]} = i(\kappa^+)$ many maximal antichains in $M[C^*(\langle i(\kappa)\rangle)]$ and $j(\kappa^+)$ can be written in V^* as the union of κ^+ many subsets, each an element of M of size λ in M. For (a) we need only show $\operatorname{Ord}^{\kappa} \cap V^* \subseteq M[C^*(\langle j(\kappa) \rangle)]$, which follows from $\operatorname{Ord}^{\kappa} \cap V^* \subseteq M[C^*(\leq \kappa)]$. For (b), note that every $\alpha < j(\kappa^+)$ can be written as j(f)(a) with $f: H(\kappa) \to \kappa^+, a \in H(\lambda)$, and there are still only κ^+ -many such f's. So we can build a $P^*(j(\kappa))$ -generic in V^* containing $C(\kappa)$.

So we have succeeded in lifting $j: V \to M$ to $j: V^* = V[C(\leq \kappa)] \to M[C^*(\leq j(\kappa))]$ in V^* , where $C(\leq \kappa)$ results by iterating α -Cohen forcing for inaccessible $\alpha \leq \kappa$.

So we have succeeded in lifting $j: V \to M$ to $j: V^* = V[C(\leq \kappa)] \to M[C^*(\leq j(\kappa))]$ in V^* , where $C(\leq \kappa)$ results by iterating α -Cohen forcing for inaccessible $\alpha \leq \kappa$.

Now we would like to make this work with α -Cohen forcing replaced by Cohen (α, α^{++}) , a forcing that kills the GCH at α

So we have succeeded in lifting $j: V \to M$ to $j: V^* = V[C(\leq \kappa)] \to M[C^*(\leq j(\kappa))]$ in V^* , where $C(\leq \kappa)$ results by iterating α -Cohen forcing for inaccessible $\alpha \leq \kappa$.

Now we would like to make this work with α -Cohen forcing replaced by Cohen (α, α^{++}) , a forcing that kills the GCH at α

It doesn't work! Here is the problem:

So we have succeeded in lifting $j: V \to M$ to $j: V^* = V[C(\leq \kappa)] \to M[C^*(\leq j(\kappa))]$ in V^* , where $C(\leq \kappa)$ results by iterating α -Cohen forcing for inaccessible $\alpha \leq \kappa$.

Now we would like to make this work with α -Cohen forcing replaced by Cohen (α, α^{++}) , a forcing that kills the GCH at α

It doesn't work! Here is the problem:

Assuming that the original $j: V \to M$ witnessed $H(\kappa^{++})$ -strength (to allow $C^*(\kappa) = C(\kappa)$), all goes well until the last lift: we can choose $C^*(\gamma)$ for *M*-inaccessible $\gamma < j(\kappa)$ and lift $j: V \to M$ to $j': V[C(<\kappa)] \to M[C^*(< j(\kappa)]$ (in $V[C(\le \kappa)])$).

Assuming that the original $j: V \to M$ witnessed $H(\kappa^{++})$ -strength (to allow $C^*(\kappa) = C(\kappa)$), all goes well until the last lift: we can choose $C^*(\gamma)$ for M-inaccessible $\gamma < j(\kappa)$ and lift $j: V \to M$ to $j': V[C(<\kappa)] \to M[C^*(< j(\kappa)]$ (in $V[C(\le \kappa)])$). We then need to find a generic $C^*(j(\kappa))$ for $P^*(j(\kappa)) =$ the Cohen $(j(\kappa), j(\kappa^{++}))$ -forcing of $M[C^*(< j(\kappa)]]$ which contains $j'[C(\kappa)]$ to get:

 $j^*: V[C(\leq \kappa)] \rightarrow M[C^*(\langle j(\kappa)) * C^*(j(\kappa))???]$

Assuming that the original $j: V \to M$ witnessed $H(\kappa^{++})$ -strength (to allow $C^*(\kappa) = C(\kappa)$), all goes well until the last lift: we can choose $C^*(\gamma)$ for *M*-inaccessible $\gamma < j(\kappa)$ and lift $j: V \to M$ to $j': V[C(<\kappa)] \to M[C^*(< j(\kappa)]$ (in $V[C(\le \kappa)])$).

We then need to find a generic $C^*(j(\kappa))$ for $P^*(j(\kappa)) =$ the Cohen $(j(\kappa), j(\kappa^{++}))$ -forcing of $M[C^*(< j(\kappa)]]$ which contains $j'[C(\kappa)]$ to get:

 $j^*: V[C(\leq \kappa)] \to M[C^*(\langle j(\kappa)) * C^*(j(\kappa))???]$

But $P^*(j(\kappa)) = \text{Cohen}(j(\kappa), j(\kappa^{++}))$ is a big forcing: it has size κ^{++} and won't have a generic in $V[C(\leq \kappa)]!$

Assuming that the original $j: V \to M$ witnessed $H(\kappa^{++})$ -strength (to allow $C^*(\kappa) = C(\kappa)$), all goes well until the last lift: we can choose $C^*(\gamma)$ for *M*-inaccessible $\gamma < j(\kappa)$ and lift $j: V \to M$ to $j': V[C(<\kappa)] \to M[C^*(< j(\kappa)]$ (in $V[C(\le \kappa)])$).

We then need to find a generic $C^*(j(\kappa))$ for $P^*(j(\kappa)) =$ the Cohen $(j(\kappa), j(\kappa^{++}))$ -forcing of $M[C^*(< j(\kappa)]]$ which contains $j'[C(\kappa)]$ to get:

 $\begin{array}{l} j^*: V[C(\leq \kappa)] \to M[C^*(< j(\kappa)) * C^*(j(\kappa))???] \\ \text{But } P^*(j(\kappa)) = \operatorname{Cohen}(j(\kappa), j(\kappa^{++})) \text{ is a big forcing: it has size} \\ \kappa^{++} \text{ and won't have a generic in } V[C(\leq \kappa)]! \end{array}$

Even worse, whereas before $j'[C(\kappa)]$ was equal to $C(\kappa)$, now $j'[C(\kappa)]$ is a complicated set of conditions!

Here is the solution: Use $Sacks(\kappa, \kappa^{++})$ instead of $Cohen(\kappa, \kappa^{++})$

Here is the solution: Use $Sacks(\kappa, \kappa^{++})$ instead of $Cohen(\kappa, \kappa^{++})$ Now we want to lift $j: V \to M$ to $j^*: V[S(\leq \kappa)] \to M[S(\leq \kappa) * S^*(\kappa, j(\kappa)) * S^*(j(\kappa))]$

Here is the solution: Use $\operatorname{Sacks}(\kappa, \kappa^{++})$ instead of $\operatorname{Cohen}(\kappa, \kappa^{++})$ Now we want to lift $j: V \to M$ to $j^*: V[S(\leq \kappa)] \to M[S(\leq \kappa) * S^*(\kappa, j(\kappa)) * S^*(j(\kappa))]$ The nice thing now is that we don't have to build a generic $S^*(j(\kappa))$ for $P^*(j(\kappa)) = \operatorname{Sacks}(j(\kappa), j(\kappa^{++}))$ containing $j'[S(\kappa)]$, because in fact $j'[S(\kappa)]$ (almost) generates one for us!

Here is the solution: Use $\operatorname{Sacks}(\kappa, \kappa^{++})$ instead of $\operatorname{Cohen}(\kappa, \kappa^{++})$ Now we want to lift $j: V \to M$ to $j^*: V[S(\leq \kappa)] \to M[S(\leq \kappa) * S^*(\kappa, j(\kappa)) * S^*(j(\kappa))]$ The nice thing now is that we don't have to build a generic $S^*(j(\kappa))$ for $P^*(j(\kappa)) = \operatorname{Sacks}(j(\kappa), j(\kappa^{++}))$ containing $j'[S(\kappa)]$, because in fact $j'[S(\kappa)]$ (almost) generates one for us! Illustrate this with just $\operatorname{Sacks}(\kappa, 1) = \kappa$ -Sacks:

Here is the solution: Use $\operatorname{Sacks}(\kappa, \kappa^{++})$ instead of $\operatorname{Cohen}(\kappa, \kappa^{++})$ Now we want to lift $j: V \to M$ to $j^*: V[S(\leq \kappa)] \to M[S(\leq \kappa) * S^*(\kappa, j(\kappa)) * S^*(j(\kappa))]$ The nice thing now is that we don't have to build a generic $S^*(j(\kappa))$ for $P^*(j(\kappa)) = \operatorname{Sacks}(j(\kappa), j(\kappa^{++}))$ containing $j'[S(\kappa)]$, because in fact $j'[S(\kappa)]$ (almost) generates one for us! Illustrate this with just $\operatorname{Sacks}(\kappa, 1) = \kappa$ -Sacks: A condition is a κ -tree, i.e. a subtree T of $2^{<\kappa}$ such that:

i. T has no terminal nodes and is $< \kappa$ -closed, i.e., the union of a $(< \kappa)$ increasing sequence of nodes in T is a node in T.

Here is the solution: Use Sacks (κ, κ^{++}) instead of Cohen (κ, κ^{++}) Now we want to lift $i: V \to M$ to $j^*: V[S(<\kappa)] \rightarrow M[S(<\kappa) * S^*(\kappa, j(\kappa)) * S^*(j(\kappa))]$ The nice thing now is that we don't have to build a generic $S^*(i(\kappa))$ for $P^*(i(\kappa)) = \text{Sacks}(i(\kappa), i(\kappa^{++}))$ containing $i'[S(\kappa)]$. because in fact $j'[S(\kappa)]$ (almost) generates one for us! Illustrate this with just $Sacks(\kappa, 1) = \kappa$ -Sacks: A condition is a κ -tree, i.e. a subtree T of $2^{<\kappa}$ such that: i. T has no terminal nodes and is $< \kappa$ -closed, i.e., the union of a $(<\kappa)$ increasing sequence of nodes in T is a node in T. ii. T has "CUB splitting": For some CUB $C(T) \subseteq \kappa, \sigma \in T$ "splits" in T iff the length of σ belongs to C(T).

Here is the solution: Use Sacks (κ, κ^{++}) instead of Cohen (κ, κ^{++}) Now we want to lift $i: V \to M$ to $j^*: V[S(<\kappa)] \rightarrow M[S(<\kappa) * S^*(\kappa, j(\kappa)) * S^*(j(\kappa))]$ The nice thing now is that we don't have to build a generic $S^*(j(\kappa))$ for $P^*(j(\kappa)) = \operatorname{Sacks}(j(\kappa), j(\kappa^{++}))$ containing $j'[S(\kappa)]$, because in fact $j'[S(\kappa)]$ (almost) generates one for us! Illustrate this with just $Sacks(\kappa, 1) = \kappa$ -Sacks: A condition is a κ -tree, i.e. a subtree T of $2^{<\kappa}$ such that: i. T has no terminal nodes and is $< \kappa$ -closed, i.e., the union of a $(<\kappa)$ increasing sequence of nodes in T is a node in T. ii. T has "CUB splitting": For some CUB $C(T) \subseteq \kappa$, $\sigma \in T$ "splits" in T iff the length of σ belongs to C(T). If G is generic then the intersection of the κ -trees in G gives us a

function $g: \kappa \rightarrow 2$, which uniquely determines G.

Here is the solution: Use Sacks (κ, κ^{++}) instead of Cohen (κ, κ^{++}) Now we want to lift $i: V \to M$ to $j^*: V[S(<\kappa)] \rightarrow M[S(<\kappa) * S^*(\kappa, j(\kappa)) * S^*(j(\kappa))]$ The nice thing now is that we don't have to build a generic $S^*(j(\kappa))$ for $P^*(j(\kappa)) = \operatorname{Sacks}(j(\kappa), j(\kappa^{++}))$ containing $j'[S(\kappa)]$, because in fact $j'[S(\kappa)]$ (almost) generates one for us! Illustrate this with just $Sacks(\kappa, 1) = \kappa$ -Sacks: A condition is a κ -tree, i.e. a subtree T of $2^{<\kappa}$ such that: i. T has no terminal nodes and is $< \kappa$ -closed, i.e., the union of a $(<\kappa)$ increasing sequence of nodes in T is a node in T. ii. T has "CUB splitting": For some CUB $C(T) \subseteq \kappa$, $\sigma \in T$ "splits" in T iff the length of σ belongs to C(T). If G is generic then the intersection of the κ -trees in G gives us a

function $g: \kappa \rightarrow 2$, which uniquely determines G.

Now prepare as before, iterating for $\kappa+1$ steps, but with $\alpha\textsc{-Sacks}$ instead of $\alpha\textsc{-Cohen}$.

Now prepare as before, iterating for $\kappa + 1$ steps, but with α -Sacks instead of α -Cohen. Then as before we obtain an embedding $j': V[S(<\kappa)] \rightarrow M[S^*(< j(\kappa))]$ (in $V[S(\le \kappa)]$)

Now prepare as before, iterating for $\kappa + 1$ steps, but with α -Sacks instead of α -Cohen. Then as before we obtain an embedding

 $j': V[S(<\kappa)] \rightarrow M[S^*(<j(\kappa))] \text{ (in } V[S(\le\kappa)])$

To extend j' further we want to find a generic $S^*(j(\kappa))$ for the $j(\kappa)$ -Sacks of $M[S^*(< j(\kappa))]$ which contains $j'[S(\kappa)]$.

Now prepare as before, iterating for $\kappa + 1$ steps, but with α -Sacks instead of α -Cohen. Then as before we obtain an embedding $j': V[S(<\kappa)] \rightarrow M[S^*(< j(\kappa))]$ (in $V[S(\le \kappa)]$) To extend j' further we want to find a generic $S^*(j(\kappa))$ for the $j(\kappa)$ -Sacks of $M[S^*(< j(\kappa))]$ which contains $j'[S(\kappa)]$. But in fact there are only two possible choices for $S^*(j(\kappa))$: Claim: The intersection of the j(C), C CUB in κ , is $\{\kappa\}$.

Now prepare as before, iterating for $\kappa + 1$ steps, but with α -Sacks instead of α -Cohen. Then as before we obtain an embedding $j': V[S(<\kappa)] \rightarrow M[S^*(< j(\kappa))]$ (in $V[S(\le\kappa)])$ To extend j' further we want to find a generic $S^*(j(\kappa))$ for the $j(\kappa)$ -Sacks of $M[S^*(< j(\kappa))]$ which contains $j'[S(\kappa)]$. But in fact there are only two possible choices for $S^*(j(\kappa))$: Claim: The intersection of the j(C), C CUB in κ , is $\{\kappa\}$. Assume this Claim.

Now prepare as before, iterating for $\kappa + 1$ steps, but with α -Sacks instead of α -Cohen. Then as before we obtain an embedding $j': V[S(<\kappa)] \rightarrow M[S^*(< j(\kappa))]$ (in $V[S(\le\kappa)])$ To extend j' further we want to find a generic $S^*(j(\kappa))$ for the $j(\kappa)$ -Sacks of $M[S^*(< j(\kappa))]$ which contains $j'[S(\kappa)]$. But in fact there are only two possible choices for $S^*(j(\kappa))$: Claim: The intersection of the j(C), C CUB in κ , is $\{\kappa\}$. Assume this Claim. For any CUB C in κ there are κ -trees T in the generic $S(\kappa)$ which only split on C.

Now prepare as before, iterating for $\kappa + 1$ steps, but with α -Sacks instead of α -Cohen. Then as before we obtain an embedding $j': V[S(<\kappa)] \rightarrow M[S^*(<j(\kappa))] \text{ (in } V[S(\leq\kappa)])$ To extend j' further we want to find a generic $S^*(j(\kappa))$ for the $j(\kappa)$ -Sacks of $M[S^*(\langle j(\kappa) \rangle)]$ which contains $j'[S(\kappa)]$. But in fact there are only two possible choices for $S^*(j(\kappa))$: Claim: The intersection of the i(C), C CUB in κ , is $\{\kappa\}$. Assume this Claim. For any CUB C in κ there are κ -trees T in the generic $S(\kappa)$ which only split on C. Thus by the Claim the intersection of the j(T), $T \in S(\kappa)$ splits only at κ and is therefore the union of exactly two $b_0, b_1 : j(\kappa) \to 2$ which first disagree at κ (a "Tuning Fork").

Now prepare as before, iterating for $\kappa + 1$ steps, but with α -Sacks instead of α -Cohen. Then as before we obtain an embedding $j': V[S(<\kappa)] \rightarrow M[S^*(<j(\kappa))] \text{ (in } V[S(\leq\kappa)])$ To extend j' further we want to find a generic $S^*(j(\kappa))$ for the $j(\kappa)$ -Sacks of $M[S^*(\langle j(\kappa) \rangle)]$ which contains $j'[S(\kappa)]$. But in fact there are only two possible choices for $S^*(i(\kappa))$: Claim: The intersection of the i(C), C CUB in κ , is $\{\kappa\}$. Assume this Claim. For any CUB C in κ there are κ -trees T in the generic $S(\kappa)$ which only split on C. Thus by the Claim the intersection of the $j(T), T \in S(\kappa)$ splits only at κ and is therefore the union of exactly two $b_0, b_1 : i(\kappa) \to 2$ which first disagree at κ (a "Tuning Fork"). As $S^*(j(\kappa))$ must contain each j(T), $T \in S(\kappa)$, b_0, b_1 are the only candidates for the desired $j(\kappa)$ -Sacks generic!

Now prepare as before, iterating for $\kappa + 1$ steps, but with α -Sacks instead of α -Cohen. Then as before we obtain an embedding $j': V[S(<\kappa)] \rightarrow M[S^*(<j(\kappa))] \text{ (in } V[S(\leq\kappa)])$ To extend j' further we want to find a generic $S^*(j(\kappa))$ for the $j(\kappa)$ -Sacks of $M[S^*(\langle j(\kappa) \rangle)]$ which contains $j'[S(\kappa)]$. But in fact there are only two possible choices for $S^*(j(\kappa))$: Claim: The intersection of the i(C), C CUB in κ , is $\{\kappa\}$. Assume this Claim. For any CUB C in κ there are κ -trees T in the generic $S(\kappa)$ which only split on C. Thus by the Claim the intersection of the $j(T), T \in S(\kappa)$ splits only at κ and is therefore the union of exactly two $b_0, b_1 : j(\kappa) \to 2$ which first disagree at κ (a "Tuning Fork"). As $S^*(j(\kappa))$ must contain each j(T), $T \in S(\kappa)$, b_0, b_1 are the only candidates for the desired $j(\kappa)$ -Sacks generic! It can be shown that both b_0, b_1 are indeed $j(\kappa)$ -Sacks generic.

Proof of Claim: The intersection of the j(C), C CUB in κ , is $\{\kappa\}$.

Proof of

Claim: The intersection of the j(C), C CUB in κ , is $\{\kappa\}$.

We assume that $j: V \to M$ is an extender ultrapower witnessing the $H(\kappa^{++})$ -strength of κ , so $M = \{j(f)(a) \mid f: H(\kappa) \to V, a \in H(\kappa^{++})\}$.

Proof of

Claim: The intersection of the j(C), C CUB in κ , is $\{\kappa\}$.

We assume that $j: V \to M$ is an extender ultrapower witnessing the $H(\kappa^{++})$ -strength of κ , so $M = \{j(f)(a) \mid f: H(\kappa) \to V, a \in H(\kappa^{++})\}$. We must show that if α does not equal κ then α fails to belong to j(C) for some CUB C in κ .

Proof of

Claim: The intersection of the j(C), C CUB in κ , is $\{\kappa\}$.

We assume that $j: V \to M$ is an extender ultrapower witnessing the $H(\kappa^{++})$ -strength of κ , so $M = \{j(f)(a) \mid f: H(\kappa) \to V, a \in H(\kappa^{++})\}$. We must show that if α does not equal κ then α fails to belong to j(C) for some CUB C in κ . We may assume that α lies between κ and $j(\kappa)$; write $\alpha = j(f)(a)$ for some $f: H(\kappa) \to \kappa, a \in H(\kappa^{++})$.

Proof of

Claim: The intersection of the j(C), C CUB in κ , is $\{\kappa\}$.

We assume that $j: V \to M$ is an extender ultrapower witnessing the $H(\kappa^{++})$ -strength of κ , so $M = \{j(f)(a) \mid f: H(\kappa) \to V, a \in H(\kappa^{++})\}$. We must show that if α does not equal κ then α fails to belong to j(C) for some CUB C in κ . We may assume that α lies between κ and $j(\kappa)$; write $\alpha = j(f)(a)$ for some $f: H(\kappa) \to \kappa, a \in H(\kappa^{++})$. We take C to be $\{\beta < \kappa \mid \beta \text{ is a limit}$ cardinal and $H(\beta)$ is closed under $f\}$, a CUB subset of κ .

Proof of

Claim: The intersection of the j(C), C CUB in κ , is $\{\kappa\}$.

We assume that $j: V \to M$ is an extender ultrapower witnessing the $H(\kappa^{++})$ -strength of κ , so $M = \{j(f)(a) \mid f: H(\kappa) \to V, a \in H(\kappa^{++})\}$. We must show that if α does not equal κ then α fails to belong to j(C) for some CUB C in κ . We may assume that α lies between κ and $j(\kappa)$; write $\alpha = j(f)(a)$ for some $f: H(\kappa) \to \kappa, a \in H(\kappa^{++})$. We take C to be $\{\beta < \kappa \mid \beta \text{ is a limit}$ cardinal and $H(\beta)$ is closed under $f\}$, a CUB subset of κ . Then $j(C) = \{\beta < j(\kappa) \mid \beta \text{ is a limit cardinal of } M \text{ and } H(\beta)^M \text{ is closed}$ under $j(f)\}$.

Proof of

Claim: The intersection of the j(C), C CUB in κ , is $\{\kappa\}$.

We assume that $j: V \to M$ is an extender ultrapower witnessing the $H(\kappa^{++})$ -strength of κ , so $M = \{j(f)(a) \mid f: H(\kappa) \to V, a \in H(\kappa^{++})\}$. We must show that if α does not equal κ then α fails to belong to j(C) for some CUB C in κ . We may assume that α lies between κ and $j(\kappa)$; write $\alpha = j(f)(a)$ for some $f: H(\kappa) \to \kappa, a \in H(\kappa^{++})$. We take C to be $\{\beta < \kappa \mid \beta \text{ is a limit}$ cardinal and $H(\beta)$ is closed under $f\}$, a CUB subset of κ . Then $j(C) = \{\beta < j(\kappa) \mid \beta \text{ is a limit cardinal of } M \text{ and } H(\beta)^M \text{ is closed}$ under $j(f)\}$. If $\beta > \kappa$ belongs to j(C) then $j(f)(b) < \beta$ for all $b \in H(\kappa^{++})^M = H(\kappa^{++})$, so in particular $\kappa < \alpha = j(f)(a) < \beta$.

Proof of

Claim: The intersection of the j(C), C CUB in κ , is $\{\kappa\}$.

We assume that $i: V \rightarrow M$ is an extender ultrapower witnessing the $H(\kappa^{++})$ -strength of κ , so $M = \{i(f)(a) \mid f : H(\kappa) \to V, \}$ $a \in H(\kappa^{++})$. We must show that if α does not equal κ then α fails to belong to i(C) for some CUB C in κ . We may assume that α lies between κ and $j(\kappa)$; write $\alpha = j(f)(a)$ for some $f: H(\kappa) \to \kappa$, $a \in H(\kappa^{++})$. We take C to be $\{\beta < \kappa \mid \beta \text{ is a limit}\}$ cardinal and $H(\beta)$ is closed under f}, a CUB subset of κ . Then $j(C) = \{\beta < j(\kappa) \mid \beta \text{ is a limit cardinal of } M \text{ and } H(\beta)^M \text{ is closed}\}$ under i(f). If $\beta > \kappa$ belongs to i(C) then $i(f)(b) < \beta$ for all $b \in H(\kappa^{++})^M = H(\kappa^{++})$, so in particular $\kappa < \alpha = j(f)(a) < \beta$. Thus α does not belong to i(C).

A similar result holds for $Sacks(\kappa, \kappa^{++})$ (joint work with Katie Thompson).

A similar result holds for Sacks (κ, κ^{++}) (joint work with Katie Thompson). A condition is a function $p : \kappa^{++} \to \kappa$ -Sacks which is trivial on all but κ many $i < \kappa^{++}$.

A similar result holds for Sacks (κ, κ^{++}) (joint work with Katie Thompson). A condition is a function $p : \kappa^{++} \to \kappa$ -Sacks which is trivial on all but κ many $i < \kappa^{++}$.

Prepare as before, iterating for $\kappa + 1$ steps, but with $Sacks(\alpha, \alpha^{++})$ at inaccessible stages $\alpha \leq \kappa$.

A similar result holds for Sacks (κ, κ^{++}) (joint work with Katie Thompson). A condition is a function $p : \kappa^{++} \to \kappa$ -Sacks which is trivial on all but κ many $i < \kappa^{++}$.

Prepare as before, iterating for $\kappa + 1$ steps, but with $Sacks(\alpha, \alpha^{++})$ at inaccessible stages $\alpha \leq \kappa$. As before we obtain an embedding

 $j': V[S(<\kappa)] \rightarrow M[S^*(< j(\kappa))] \text{ (in } V[S(\le\kappa)])$

A similar result holds for Sacks (κ, κ^{++}) (joint work with Katie Thompson). A condition is a function $p : \kappa^{++} \to \kappa$ -Sacks which is trivial on all but κ many $i < \kappa^{++}$.

Prepare as before, iterating for $\kappa + 1$ steps, but with $Sacks(\alpha, \alpha^{++})$ at inaccessible stages $\alpha \leq \kappa$. As before we obtain an embedding

 $j': V[S(<\kappa)] \rightarrow M[S^*(<j(\kappa))] \text{ (in } V[S(\le\kappa)])$

To extend j' further we want to find a generic $S^*(j(\kappa))$ for the Sacks $(j(\kappa), j(\kappa^{++})$ of $M[S^*(< j(\kappa))]$ which contains $j'[S(\kappa)]$, where $S(\kappa)$ is the Sacks (κ, κ^{++}) -generic, yielding:

$$j^*: V[S(\leq \kappa)] \rightarrow M[S^*(< j(\kappa))][S^*(j(\kappa))]$$

$$j^*: V[S(\leq \kappa)] \rightarrow M[S^*(\langle j(\kappa))][S^*(j(\kappa))]$$

Now what happens is this:

For $i < j(\kappa^{++})$ in the range of j, the intersection of the j(p)(i) is a tuning fork $b_0^i, b_1^i : j(\kappa) \to 2$.

$$j^*: V[S(\leq \kappa)] \to M[S^*(\langle j(\kappa))][S^*(j(\kappa))]$$

Now what happens is this:

For $i < j(\kappa^{++})$ in the range of j, the intersection of the j(p)(i) is a tuning fork $b_0^i, b_1^i : j(\kappa) \to 2$.

For $i < j(\kappa^{++})$ not in the range of j, the intersection of the j(p)(i) is a single $b^i : j(\kappa) \to 2$.

$$j^*: V[S(\leq \kappa)] \to M[S^*(\langle j(\kappa))][S^*(j(\kappa))]$$

Now what happens is this:

For $i < j(\kappa^{++})$ in the range of j, the intersection of the j(p)(i) is a tuning fork $b_0^i, b_1^i : j(\kappa) \to 2$.

For $i < j(\kappa^{++})$ not in the range of j, the intersection of the j(p)(i) is a single $b^i : j(\kappa) \to 2$.

And if for $i < j(\kappa^{++})$ we take the b_0^i for i in the range of j and the b^i for i not in the range of j then we obtain a $Sacks(j(\kappa), j(\kappa^{++}))$ -generic.

$$j^*: V[S(\leq \kappa)] \to M[S^*(\langle j(\kappa))][S^*(j(\kappa))]$$

Now what happens is this:

For $i < j(\kappa^{++})$ in the range of j, the intersection of the j(p)(i) is a tuning fork $b_0^i, b_1^i : j(\kappa) \to 2$.

For $i < j(\kappa^{++})$ not in the range of j, the intersection of the j(p)(i) is a single $b^i : j(\kappa) \to 2$.

And if for $i < j(\kappa^{++})$ we take the b_0^i for i in the range of j and the b^i for i not in the range of j then we obtain a $Sacks(j(\kappa), j(\kappa^{++}))$ -generic. This generic contains $j'[S(\kappa)]$ by its definition (and is almost generated by it).

$$j^*: V[S(\leq \kappa)] \to M[S^*(\langle j(\kappa))][S^*(j(\kappa))]$$

Now what happens is this:

For $i < j(\kappa^{++})$ in the range of j, the intersection of the j(p)(i) is a tuning fork $b_0^i, b_1^i : j(\kappa) \to 2$.

For $i < j(\kappa^{++})$ not in the range of j, the intersection of the j(p)(i) is a single $b^i : j(\kappa) \to 2$.

And if for $i < j(\kappa^{++})$ we take the b_0^i for i in the range of j and the b^i for i not in the range of j then we obtain a $Sacks(j(\kappa), j(\kappa^{++}))$ -generic. This generic contains $j'[S(\kappa)]$ by its definition (and is almost generated by it).

Conclusion: The fusion property for κ -Sacks is a good substitute for κ^+ -distributivity, and therefore works better than κ -Cohen.

Other applications

Some other applications of "fusion lifting":

Some other applications of "fusion lifting":

(with Magidor) Assume GCH, let κ be measurable and let α be any cardinal at most κ^{++} . Then there is a cofinality-preserving forcing extension in which there are exactly α normal measures on κ .

Some other applications of "fusion lifting":

(with Magidor) Assume GCH, let κ be measurable and let α be any cardinal at most κ^{++} . Then there is a cofinality-preserving forcing extension in which there are exactly α normal measures on κ . If κ is $H(\kappa^{++})$ -strong, then there is a cofinality-preserving forcing extension in which GCH fails at κ and there is a unique normal measure on κ .

Some other applications of "fusion lifting":

(with Magidor) Assume GCH, let κ be measurable and let α be any cardinal at most κ^{++} . Then there is a cofinality-preserving forcing extension in which there are exactly α normal measures on κ . If κ is $H(\kappa^{++})$ -strong, then there is a cofinality-preserving forcing extension in which GCH fails at κ and there is a unique normal measure on κ .

Uses variants of κ -Sacks, tuning forks and nonstationary support iterations.

(with Dobrinen) Assume GCH and let κ be $H(\kappa^{++})$ -strong. Then there is a forcing extension in which κ is still measurable and the tree property holds at κ^{++} .

Some other applications of "fusion lifting":

(with Magidor) Assume GCH, let κ be measurable and let α be any cardinal at most κ^{++} . Then there is a cofinality-preserving forcing extension in which there are exactly α normal measures on κ . If κ is $H(\kappa^{++})$ -strong, then there is a cofinality-preserving forcing extension in which GCH fails at κ and there is a unique normal measure on κ .

Uses variants of κ -Sacks, tuning forks and nonstationary support iterations.

(with Dobrinen) Assume GCH and let κ be $H(\kappa^{++})$ -strong. Then there is a forcing extension in which κ is still measurable and the tree property holds at κ^{++} .

Extends the tuning fork method form a κ -Sacks product to κ -Sacks iteration (of length κ^{++}).

Forcings that preserve large cardinals

(with Honzik) (Special Case) Assume GCH and F is an Easton function such that $F \upharpoonright \kappa$ is definable over $H(F(\kappa))$ uniformly for all regular κ . Then there is a cofinality-preserving forcing extension in which $2^{\gamma} = F(\gamma)$ for all regular γ and every κ which is $H(F(\kappa))$ -strong in the ground model remains measurable.

Forcings that preserve large cardinals

(with Honzik) (Special Case) Assume GCH and F is an Easton function such that $F \upharpoonright \kappa$ is definable over $H(F(\kappa))$ uniformly for all regular κ . Then there is a cofinality-preserving forcing extension in which $2^{\gamma} = F(\gamma)$ for all regular γ and every κ which is $H(F(\kappa))$ -strong in the ground model remains measurable.

Uses the tuning fork method and matrices of conditions to lift an embedding.

New area; we consider three examples:

 $\mathfrak{d}(\kappa)$, CofSym (κ) , $\mathfrak{s}(\kappa)$

New area; we consider three examples:

 $\mathfrak{d}(\kappa)$, CofSym (κ) , $\mathfrak{s}(\kappa)$

Generalised dominating number $\mathfrak{d}(\kappa)$

New area; we consider three examples:

 $\mathfrak{d}(\kappa)$, CofSym (κ) , $\mathfrak{s}(\kappa)$

Generalised dominating number $\mathfrak{d}(\kappa)$

Cummings and Shelah proved an Easton-type theorem for the function $\kappa \mapsto \mathfrak{d}(\kappa)$. In particular:

Theorem

(Cummings-Shelah) Assume GCH and κ regular. Then in a cofinality-preserving extension, $\kappa^+ = \mathfrak{d}(\kappa) < 2^{\kappa}$.

Their proof goes as follows: First apply $Cohen(\kappa, \kappa^{++})$ to make $2^{\kappa} = \kappa^{++}$.

Theorem

(Cummings-Shelah) Assume GCH and κ regular. Then in a cofinality-preserving extension, $\kappa^+ = \mathfrak{d}(\kappa) < 2^{\kappa}$.

Their proof goes as follows: First apply $Cohen(\kappa, \kappa^{++})$ to make $2^{\kappa} = \kappa^{++}$. Then iterate κ -Hechler forcing for κ^+ steps, adding at each step a function $f : \kappa \to \kappa$ which eventually dominates all ground model functions. A condition in κ -Hechler is a pair (s, f) where

 $\mathbf{s}: |\mathbf{s}| \to \kappa, \; |\mathbf{s}| < \kappa$

Theorem

(Cummings-Shelah) Assume GCH and κ regular. Then in a cofinality-preserving extension, $\kappa^+ = \mathfrak{d}(\kappa) < 2^{\kappa}$.

Their proof goes as follows: First apply $Cohen(\kappa, \kappa^{++})$ to make $2^{\kappa} = \kappa^{++}$. Then iterate κ -Hechler forcing for κ^+ steps, adding at each step a function $f : \kappa \to \kappa$ which eventually dominates all ground model functions. A condition in κ -Hechler is a pair (s, f) where

$$\begin{aligned} \mathbf{s} : |\mathbf{s}| \to \kappa, \ |\mathbf{s}| < \kappa \\ \mathbf{f} : \kappa \to \kappa \end{aligned}$$

Theorem

(Cummings-Shelah) Assume GCH and κ regular. Then in a cofinality-preserving extension, $\kappa^+ = \mathfrak{d}(\kappa) < 2^{\kappa}$.

Their proof goes as follows: First apply $Cohen(\kappa, \kappa^{++})$ to make $2^{\kappa} = \kappa^{++}$. Then iterate κ -Hechler forcing for κ^+ steps, adding at each step a function $f : \kappa \to \kappa$ which eventually dominates all ground model functions. A condition in κ -Hechler is a pair (s, f) where

$$\begin{split} s: |s| &\to \kappa, \ |s| < \kappa \\ f: \kappa &\to \kappa \\ (t,g) &\leq (s,f) \text{ iff } t \supseteq s, \ g \text{ dominates } f, \ t \text{ dominates } f \text{ on } |t| \setminus |s|. \end{split}$$

Theorem

(Cummings-Shelah) Assume GCH and κ regular. Then in a cofinality-preserving extension, $\kappa^+ = \mathfrak{d}(\kappa) < 2^{\kappa}$.

Their proof goes as follows: First apply $Cohen(\kappa, \kappa^{++})$ to make $2^{\kappa} = \kappa^{++}$. Then iterate κ -Hechler forcing for κ^+ steps, adding at each step a function $f : \kappa \to \kappa$ which eventually dominates all ground model functions. A condition in κ -Hechler is a pair (s, f) where

$$\begin{array}{l} s: |s| \to \kappa, \ |s| < \kappa \\ f: \kappa \to \kappa \\ (t,g) \leq (s,f) \ \text{iff} \ t \supseteq s, \ g \ \text{dominates} \ f, \ t \ \text{dominates} \ f \ \text{on} \ |t| \setminus |s|. \end{array}$$
This is κ -closed and κ^+ -cc.

Theorem

(Cummings-Shelah) Assume GCH and κ regular. Then in a cofinality-preserving extension, $\kappa^+ = \mathfrak{d}(\kappa) < 2^{\kappa}$.

Their proof goes as follows: First apply $Cohen(\kappa, \kappa^{++})$ to make $2^{\kappa} = \kappa^{++}$. Then iterate κ -Hechler forcing for κ^+ steps, adding at each step a function $f : \kappa \to \kappa$ which eventually dominates all ground model functions. A condition in κ -Hechler is a pair (s, f) where

$$\begin{array}{l} s: |s| \to \kappa, \ |s| < \kappa \\ f: \kappa \to \kappa \\ (t,g) \leq (s,f) \ \text{iff} \ t \supseteq s, \ g \ \text{dominates} \ f, \ t \ \text{dominates} \ f \ \text{on} \ |t| \setminus |s|. \end{array}$$
This is κ -closed and κ^+ -cc.

In the resulting model $\mathfrak{d}(\kappa) = \kappa^+$.

Question: Can one have $\mathfrak{d}(\kappa) < 2^{\kappa}$ for a measurable κ ?

Question: Can one have $\mathfrak{d}(\kappa) < 2^{\kappa}$ for a measurable κ ?

Assume GCH, κ is $H(\kappa^{++})$ -strong and $j: V \to M$ witnesses the latter via an extender ultrapower.

Question: Can one have $\mathfrak{d}(\kappa) < 2^{\kappa}$ for a measurable κ ?

Assume GCH, κ is $H(\kappa^{++})$ -strong and $j: V \to M$ witnesses the latter via an extender ultrapower.

Strategy: Prepare up to κ using Cohen (α, α^{++}) followed by an α^{+} iteration of α -Hechler, and lift the embedding:

 $V[CH(\leq \kappa)] \rightarrow M[CH(< j(\kappa)) * CH(j(\kappa))]$

Question: Can one have $\mathfrak{d}(\kappa) < 2^{\kappa}$ for a measurable κ ?

Assume GCH, κ is $H(\kappa^{++})$ -strong and $j: V \to M$ witnesses the latter via an extender ultrapower.

Strategy: Prepare up to κ using Cohen (α, α^{++}) followed by an α^{+} iteration of α -Hechler, and lift the embedding:

$$V[CH(\leq \kappa)] \rightarrow M[CH(< j(\kappa)) * CH(j(\kappa))]$$

Doesn't work!

Question: Can one have $\mathfrak{d}(\kappa) < 2^{\kappa}$ for a measurable κ ?

Assume GCH, κ is $H(\kappa^{++})$ -strong and $j: V \to M$ witnesses the latter via an extender ultrapower.

Strategy: Prepare up to κ using Cohen (α, α^{++}) followed by an α^{+} iteration of α -Hechler, and lift the embedding:

$$V[CH(\leq \kappa)] \rightarrow M[CH(< j(\kappa)) * CH(j(\kappa))]$$

Doesn't work!

We already saw the problems with lifting for Cohen (κ, κ^{++}) ; but κ -Hechler presents even more serious difficulties:

Consider

 $\mathsf{Consider}$

 $j^*: V[H(\leq \kappa)] \rightarrow M[H^*(\langle j(\kappa)) * H^*(j(\kappa))]$

Consider

$$j^*: V[H(\leq \kappa)] \to M[H^*(\langle j(\kappa)) * H^*(j(\kappa))]$$

where the $H(\alpha)$, $H^*(\alpha)$ are generic for α -Hechler forcing.

Consider

$$j^*: V[H(\leq \kappa)] \rightarrow M[H^*(\langle j(\kappa)) * H^*(j(\kappa))]$$

where the $H(\alpha)$, $H^*(\alpha)$ are generic for α -Hechler forcing. Now we want the $j(\kappa)$ -Hechler generic $H^*(j(\kappa))$ to extend the κ -Hechler generic $H(\kappa)$.

Consider

$$j^*: V[H(\leq \kappa)] \rightarrow M[H^*(\langle j(\kappa)) * H^*(j(\kappa))]$$

where the $H(\alpha)$, $H^*(\alpha)$ are generic for α -Hechler forcing. Now we want the $j(\kappa)$ -Hechler generic $H^*(j(\kappa))$ to extend the κ -Hechler generic $H(\kappa)$. Let $h^* : j(\kappa) \to j(\kappa)$ be the $j(\kappa)$ -Hechler generic function associated with $H^*(j(\kappa))$ and $h : \kappa \to \kappa$ the κ -Hechler generic function associated with $H(\kappa)$.

Consider

$$j^*: V[H(\leq \kappa)] \rightarrow M[H^*(\langle j(\kappa)) * H^*(j(\kappa))]$$

where the $H(\alpha)$, $H^*(\alpha)$ are generic for α -Hechler forcing. Now we want the $j(\kappa)$ -Hechler generic $H^*(j(\kappa))$ to extend the κ -Hechler generic $H(\kappa)$. Let $h^* : j(\kappa) \to j(\kappa)$ be the $j(\kappa)$ -Hechler generic function associated with $H^*(j(\kappa))$ and $h : \kappa \to \kappa$ the κ -Hechler generic function associated with $H(\kappa)$. Then:

For any $f : \kappa \to \kappa$ in V, h dominates f beyond some $\alpha < \kappa$;

Consider

$$j^*: V[H(\leq \kappa)] \rightarrow M[H^*(\langle j(\kappa)) * H^*(j(\kappa))]$$

where the $H(\alpha)$, $H^*(\alpha)$ are generic for α -Hechler forcing. Now we want the $j(\kappa)$ -Hechler generic $H^*(j(\kappa))$ to extend the κ -Hechler generic $H(\kappa)$. Let $h^* : j(\kappa) \to j(\kappa)$ be the $j(\kappa)$ -Hechler generic function associated with $H^*(j(\kappa))$ and $h : \kappa \to \kappa$ the κ -Hechler generic function associated with $H(\kappa)$. Then:

For any $f : \kappa \to \kappa$ in V, h dominates f beyond some $\alpha < \kappa$; so For any $f : \kappa \to \kappa$ in V, h^* dominates j(f) beyond (the same) ordinal $\alpha < \kappa$, and in particular $j(f)(\kappa) < h^*(\kappa)$.

Consider

$$j^*: V[H(\leq \kappa)] \rightarrow M[H^*(\langle j(\kappa)) * H^*(j(\kappa))]$$

where the $H(\alpha)$, $H^*(\alpha)$ are generic for α -Hechler forcing. Now we want the $j(\kappa)$ -Hechler generic $H^*(j(\kappa))$ to extend the κ -Hechler generic $H(\kappa)$. Let $h^* : j(\kappa) \to j(\kappa)$ be the $j(\kappa)$ -Hechler generic function associated with $H^*(j(\kappa))$ and $h : \kappa \to \kappa$ the κ -Hechler generic function associated with $H(\kappa)$. Then:

For any $f : \kappa \to \kappa$ in V, h dominates f beyond some $\alpha < \kappa$; so For any $f : \kappa \to \kappa$ in V, h^* dominates j(f) beyond (the same) ordinal $\alpha < \kappa$, and in particular $j(f)(\kappa) < h^*(\kappa)$.

But we have seen that the intersection of the j(C), C club in κ is $\{\kappa\}$ and from this it follows that the $j(f)(\kappa)$ for $f : \kappa \to \kappa$ are cofinal in $j(\kappa)$.

Consider

$$j^*: V[H(\leq \kappa)] \rightarrow M[H^*(\langle j(\kappa)) * H^*(j(\kappa))]$$

where the $H(\alpha)$, $H^*(\alpha)$ are generic for α -Hechler forcing. Now we want the $j(\kappa)$ -Hechler generic $H^*(j(\kappa))$ to extend the κ -Hechler generic $H(\kappa)$. Let $h^* : j(\kappa) \to j(\kappa)$ be the $j(\kappa)$ -Hechler generic function associated with $H^*(j(\kappa))$ and $h : \kappa \to \kappa$ the κ -Hechler generic function associated with $H(\kappa)$. Then:

For any $f : \kappa \to \kappa$ in V, h dominates f beyond some $\alpha < \kappa$; so For any $f : \kappa \to \kappa$ in V, h^* dominates j(f) beyond (the same) ordinal $\alpha < \kappa$, and in particular $j(f)(\kappa) < h^*(\kappa)$.

But we have seen that the intersection of the j(C), C club in κ is $\{\kappa\}$ and from this it follows that the $j(f)(\kappa)$ for $f : \kappa \to \kappa$ are cofinal in $j(\kappa)$. So $h^*(\kappa)$ cannot be defined!

But note that we have already solved this problem:

But note that we have already solved this problem:

We showed that κ remains measurable after iterating Sacks (α, α^{++}) for inaccessible $\alpha \leq \kappa$.

But note that we have already solved this problem:

We showed that κ remains measurable after iterating Sacks (α, α^{++}) for inaccessible $\alpha \leq \kappa$. This factors as

(Iteration of Sacks(α, α^{++}) below κ) * Sacks(κ, κ^{++}).

But note that we have already solved this problem:

We showed that κ remains measurable after iterating Sacks (α, α^{++}) for inaccessible $\alpha \leq \kappa$. This factors as

(Iteration of Sacks(α, α^{++}) below κ) * Sacks(κ, κ^{++}).

A forcing is κ^{κ} bounding iff every function $f : \kappa \to \kappa$ that it adds is dominated by such a function from the ground model.

But note that we have already solved this problem:

We showed that κ remains measurable after iterating Sacks (α, α^{++}) for inaccessible $\alpha \leq \kappa$. This factors as

(Iteration of Sacks(α, α^{++}) below κ) * Sacks(κ, κ^{++}).

A forcing is κ^{κ} bounding iff every function $f : \kappa \to \kappa$ that it adds is dominated by such a function from the ground model. Any κ -cc forcing is κ^{κ} bounding, and fusion shows that $Sacks(\kappa, \kappa^{++})$ is also κ^{κ} bounding.

But note that we have already solved this problem:

We showed that κ remains measurable after iterating Sacks (α, α^{++}) for inaccessible $\alpha \leq \kappa$. This factors as

(Iteration of Sacks(α, α^{++}) below κ) * Sacks(κ, κ^{++}).

A forcing is κ^{κ} bounding iff every function $f : \kappa \to \kappa$ that it adds is dominated by such a function from the ground model. Any κ -cc forcing is κ^{κ} bounding, and fusion shows that Sacks (κ, κ^{++}) is also κ^{κ} bounding. It follows that the above iteration is κ^{κ} bounding and therefore over a model of GCH forces $\mathfrak{d}(\kappa) = \kappa^+ < 2^{\kappa} = \kappa^{++}$.

But note that we have already solved this problem:

We showed that κ remains measurable after iterating Sacks (α, α^{++}) for inaccessible $\alpha \leq \kappa$. This factors as

(Iteration of Sacks(α, α^{++}) below κ) * Sacks(κ, κ^{++}).

A forcing is κ^{κ} bounding iff every function $f : \kappa \to \kappa$ that it adds is dominated by such a function from the ground model. Any κ -cc forcing is κ^{κ} bounding, and fusion shows that Sacks (κ, κ^{++}) is also κ^{κ} bounding. It follows that the above iteration is κ^{κ} bounding and therefore over a model of GCH forces $\mathfrak{d}(\kappa) = \kappa^+ < 2^{\kappa} = \kappa^{++}$. We saw earlier that κ is measurable in the generic extension.

With enough supercompactness, it can be shown that the κ -Cohen with κ -Hechler strategy does work, and indeed one can get κ measurable with any reasonable values for $\vartheta(\kappa)$, $\vartheta(\kappa)$ and 2^{κ} , where $\vartheta(\kappa)$ is the bounding number at κ , i.e., the smallest size of a subset of κ_{κ} which is not bounded in κ_{κ} under the order of eventual domination.

With enough supercompactness, it can be shown that the κ -Cohen with κ -Hechler strategy does work, and indeed one can get κ measurable with any reasonable values for $\vartheta(\kappa)$, $\vartheta(\kappa)$ and 2^{κ} , where $\vartheta(\kappa)$ is the bounding number at κ , i.e., the smallest size of a subset of $\kappa \kappa$ which is not bounded in $\kappa \kappa$ under the order of eventual domination.

Question: Is it consistent relative to a strong cardinal (i.e., a cardinal κ which is $H(\lambda)$ -strong for all λ) to have a measurable κ with $\mathfrak{b}(\kappa) = \kappa^{++}$?

The Cardinal Characteristic $CofSym(\kappa)$

The Cardinal Characteristic $CofSym(\kappa)$

Let κ be regular.

The Cardinal Characteristic $CofSym(\kappa)$

Let κ be regular. Sym (κ) = group of permutations of κ under composition.

The Cardinal Characteristic $CofSym(\kappa)$

Let κ be regular. Sym (κ) = group of permutations of κ under composition. CofSym (κ) = least λ such that Sym (κ) is the union of a strictly increasing λ -chain of subgroups.

The Cardinal Characteristic $CofSym(\kappa)$

Let κ be regular. Sym (κ) = group of permutations of κ under composition. CofSym (κ) = least λ such that Sym (κ) is the union of a strictly increasing λ -chain of subgroups.

Macpherson and Neumann: $CofSym(\kappa) > \kappa$

Sharp and Thomas: For any regular κ , can force CofSym(κ) to be greater than κ^+ .

Theorem

(F-Zdomskyy) Suppose that κ is $H(\kappa^{++})$ -strong. Then in a forcing extension, κ is measurable and CofSym $(\kappa) = \kappa^{++}$.

Sharp and Thomas: For any regular κ , can force CofSym(κ) to be greater than κ^+ .

Theorem

(F-Zdomskyy) Suppose that κ is $H(\kappa^{++})$ -strong. Then in a forcing extension, κ is measurable and CofSym $(\kappa) = \kappa^{++}$.

The Sharp-Thomas proof does not appear to work; instead one uses an iteration of $Miller(\kappa)$ (a version of Miller forcing at κ with continuous club-splitting) mixed with a variant of κ -Sacks forcing.

Sharp and Thomas: For any regular κ , can force CofSym(κ) to be greater than κ^+ .

Theorem

(F-Zdomskyy) Suppose that κ is $H(\kappa^{++})$ -strong. Then in a forcing extension, κ is measurable and CofSym $(\kappa) = \kappa^{++}$.

The Sharp-Thomas proof does not appear to work; instead one uses an iteration of $Miller(\kappa)$ (a version of Miller forcing at κ with continuous club-splitting) mixed with a variant of κ -Sacks forcing. It is another lifting argument using fusion.

Sharp and Thomas: For any regular κ , can force CofSym(κ) to be greater than κ^+ .

Theorem

(F-Zdomskyy) Suppose that κ is $H(\kappa^{++})$ -strong. Then in a forcing extension, κ is measurable and CofSym $(\kappa) = \kappa^{++}$.

The Sharp-Thomas proof does not appear to work; instead one uses an iteration of $Miller(\kappa)$ (a version of Miller forcing at κ with continuous club-splitting) mixed with a variant of κ -Sacks forcing. It is another lifting argument using fusion.

Question: Is it consistent that $CofSym(\kappa) = \kappa^{+++}$ for a measurable κ ?

The Cardinal Characteristic $\mathfrak{s}(\kappa)$

The Cardinal Characteristic $\mathfrak{s}(\kappa)$

Fix κ regular.

The Cardinal Characteristic $\mathfrak{s}(\kappa)$

Fix κ regular. For x, y subsets of κ of size κ , x splits y iff both $y \setminus x$ and $y \cap x$ have size κ .

The Cardinal Characteristic $\mathfrak{s}(\kappa)$

Fix κ regular. For x, y subsets of κ of size κ , x splits y iff both $y \setminus x$ and $y \cap x$ have size κ . $\mathfrak{s}(\kappa)$ is the least size of a splitting family of subsets of κ , i.e., a family sufficient to split every size κ subset of κ .

The Cardinal Characteristic $\mathfrak{s}(\kappa)$

Fix κ regular. For x, y subsets of κ of size κ , x splits y iff both $y \setminus x$ and $y \cap x$ have size κ . $\mathfrak{s}(\kappa)$ is the least size of a splitting family of subsets of κ , i.e., a family sufficient to split every size κ subset of κ .

Facts:

The Cardinal Characteristic $\mathfrak{s}(\kappa)$

Fix κ regular. For x, y subsets of κ of size κ , x splits y iff both $y \setminus x$ and $y \cap x$ have size κ . $\mathfrak{s}(\kappa)$ is the least size of a splitting family of subsets of κ , i.e., a family sufficient to split every size κ subset of κ .

Facts: For κ regular and uncountable:

The Cardinal Characteristic $\mathfrak{s}(\kappa)$

Fix κ regular. For x, y subsets of κ of size κ , x splits y iff both $y \setminus x$ and $y \cap x$ have size κ . $\mathfrak{s}(\kappa)$ is the least size of a splitting family of subsets of κ , i.e., a family sufficient to split every size κ subset of κ .

Facts: For κ regular and uncountable: κ is inaccessible iff $\mathfrak{s}(\kappa) \geq \kappa$

The Cardinal Characteristic $\mathfrak{s}(\kappa)$

Fix κ regular. For x, y subsets of κ of size κ , x splits y iff both $y \setminus x$ and $y \cap x$ have size κ . $\mathfrak{s}(\kappa)$ is the least size of a splitting family of subsets of κ , i.e., a family sufficient to split every size κ subset of κ .

Facts: For κ regular and uncountable: κ is inaccessible iff $\mathfrak{s}(\kappa) \geq \kappa$ κ is weakly compact iff $\mathfrak{s}(\kappa) > \kappa$

The Cardinal Characteristic $\mathfrak{s}(\kappa)$

Fix κ regular. For x, y subsets of κ of size κ , x splits y iff both $y \setminus x$ and $y \cap x$ have size κ . $\mathfrak{s}(\kappa)$ is the least size of a splitting family of subsets of κ , i.e., a family sufficient to split every size κ subset of κ .

Facts: For κ regular and uncountable: κ is inaccessible iff $\mathfrak{s}(\kappa) \geq \kappa$ κ is weakly compact iff $\mathfrak{s}(\kappa) > \kappa$ Relative to a supercompact, it is consistent to have a measurable κ with $\mathfrak{s}(\kappa) = \kappa^{++}$.

The Cardinal Characteristic $\mathfrak{s}(\kappa)$

Fix κ regular. For x, y subsets of κ of size κ , x splits y iff both $y \setminus x$ and $y \cap x$ have size κ . $\mathfrak{s}(\kappa)$ is the least size of a splitting family of subsets of κ , i.e., a family sufficient to split every size κ subset of κ .

Facts: For κ regular and uncountable: κ is inaccessible iff $\mathfrak{s}(\kappa) \geq \kappa$ κ is weakly compact iff $\mathfrak{s}(\kappa) > \kappa$ Relative to a supercompact, it is consistent to have a measurable κ with $\mathfrak{s}(\kappa) = \kappa^{++}$. (Zapletal) $\mathfrak{s}(\kappa) > \kappa^{+}$ for an uncountable regular κ requires an α of Mitchell order α^{++} (slightly weaker than $H(\alpha^{++})$ -strong)

The Cardinal Characteristic $\mathfrak{s}(\kappa)$

Fix κ regular. For x, y subsets of κ of size κ , x splits y iff both $y \setminus x$ and $y \cap x$ have size κ . $\mathfrak{s}(\kappa)$ is the least size of a splitting family of subsets of κ , i.e., a family sufficient to split every size κ subset of κ .

Facts: For κ regular and uncountable: κ is inaccessible iff $\mathfrak{s}(\kappa) \geq \kappa$ κ is weakly compact iff $\mathfrak{s}(\kappa) > \kappa$ Relative to a supercompact, it is consistent to have a measurable κ with $\mathfrak{s}(\kappa) = \kappa^{++}$. (Zapletal) $\mathfrak{s}(\kappa) > \kappa^{+}$ for an uncountable regular κ requires an α of Mitchell order α^{++} (slightly weaker than $H(\alpha^{++})$ -strong)

Question: Can one obtain a measurable κ with $\mathfrak{s}(\kappa) = \kappa^{++}$ from an α which is $H(\alpha^{++})$ -strong?

Question: Can we have the advantages of both V = L and large cardinals?

Question: Can we have the advantages of both V = L and large cardinals?

2 approaches:

Question: Can we have the advantages of both V = L and large cardinals?

2 approaches:

Inner model programme: A universe with large cardinals has an *inner model* which is *L*-like and has large cardinals

Question: Can we have the advantages of both V = L and large cardinals?

2 approaches:

Inner model programme: A universe with large cardinals has an *inner model* which is *L*-like and has large cardinals

Outer model programme: A universe with large cardinals has an *outer model* which *L*-like and has large cardinals

1st approach uses fine structure theory and iterated ultrapowers 2nd approach uses forcing: much easier

Examples of *L*-like properties:

Examples of *L*-like properties: GCH

Examples of *L*-like properties: GCH Definable Wellorders of the Universe

Examples of *L*-like properties: GCH Definable Wellorders of the Universe Jensen's \Diamond , \Box and Morass Principles

Examples of *L*-like properties: GCH Definable Wellorders of the Universe Jensen's \Diamond , \Box and Morass Principles Condensation Principles

Examples of *L*-like properties:

GCH

Definable Wellorders of the Universe

Jensen's \diamondsuit , \Box and Morass Principles

Condensation Principles

Recall: $j: V \rightarrow M$ with critical point κ is

Examples of *L*-like properties: GCH Definable Wellorders of the Universe Jensen's \Diamond , \Box and Morass Principles

Condensation Principles

Recall: $j: V \to M$ with critical point κ is Superstrong iff $H(j(\kappa)) \subseteq M$

Examples of *L*-like properties:

GCH

Definable Wellorders of the Universe

Jensen's $\diamondsuit,\ \square$ and Morass Principles

Condensation Principles

Recall: $j : V \to M$ with critical point κ is Superstrong iff $H(j(\kappa)) \subseteq M$ We may assume $M = \{j(f)(a) \mid f : H(\kappa) \to V, a \in H(j(\kappa))\}$

Examples of *L*-like properties:

GCH

Definable Wellorders of the Universe

Jensen's $\diamondsuit,\ \square$ and Morass Principles

Condensation Principles

Recall: $j : V \to M$ with critical point κ is Superstrong iff $H(j(\kappa)) \subseteq M$ We may assume $M = \{j(f)(a) \mid f : H(\kappa) \to V, a \in H(j(\kappa))\}$ Hyperstrong iff $H(j(\kappa)^+) \subseteq M$

Examples of *L*-like properties: GCH Definable Wellorders of the Universe Jensen's \Diamond , \Box and Morass Principles Condensation Principles Recall: $j: V \to M$ with critical point κ is Superstrong iff $H(i(\kappa)) \subseteq M$ We may assume $M = \{i(f)(a) \mid f : H(\kappa) \to V, a \in H(i(\kappa))\}$ Hyperstrong iff $H(i(\kappa)^+) \subset M$ We may assume $M = \{i(f)(a) \mid f : H(\kappa^+) \to V, a \in H(i(\kappa)^+)\}$

Examples of *L*-like properties: GCH Definable Wellorders of the Universe Jensen's ◊, □ and Morass Principles Condensation Principles

Recall: $j: V \to M$ with critical point κ is Superstrong iff $H(j(\kappa)) \subseteq M$ We may assume $M = \{j(f)(a) \mid f: H(\kappa) \to V, a \in H(j(\kappa))\}$ Hyperstrong iff $H(j(\kappa)^+) \subseteq M$ We may assume $M = \{j(f)(a) \mid f: H(\kappa^+) \to V, a \in H(j(\kappa)^+)\}$ n + 1-superstrong iff $H(j^{n+1}(\kappa)) \subseteq M$

Examples of *L*-like properties: GCH Definable Wellorders of the Universe Jensen's \Diamond , \Box and Morass Principles Condensation Principles Recall: $i: V \to M$ with critical point κ is Superstrong iff $H(i(\kappa)) \subset M$ We may assume $M = \{i(f)(a) \mid f : H(\kappa) \to V, a \in H(i(\kappa))\}$ Hyperstrong iff $H(i(\kappa)^+) \subset M$ We may assume $M = \{i(f)(a) \mid f : H(\kappa^+) \to V, a \in H(i(\kappa)^+)\}$ n+1-superstrong iff $H(j^{n+1}(\kappa)) \subset M$ We may assume M = $\{i(f)(a) \mid f: H(i(\kappa)^{+n}) \to V, a \in H(i^{n+1}(\kappa))\}$

Examples of *L*-like properties: GCH Definable Wellorders of the Universe Jensen's \Diamond , \Box and Morass Principles Condensation Principles Recall: $i: V \to M$ with critical point κ is Superstrong iff $H(i(\kappa)) \subset M$ We may assume $M = \{i(f)(a) \mid f : H(\kappa) \to V, a \in H(i(\kappa))\}$ Hyperstrong iff $H(i(\kappa)^+) \subset M$ We may assume $M = \{i(f)(a) \mid f : H(\kappa^+) \to V, a \in H(i(\kappa)^+)\}$ n+1-superstrong iff $H(j^{n+1}(\kappa)) \subset M$ We may assume M = $\{i(f)(a) \mid f: H(i(\kappa)^{+n}) \to V, a \in H(i^{n+1}(\kappa))\}$ ω -superstrong iff $H(j^{\omega}(\kappa)) \subset M$

Examples of *L*-like properties: GCH Definable Wellorders of the Universe Jensen's \Diamond , \Box and Morass Principles Condensation Principles Recall: $i: V \to M$ with critical point κ is Superstrong iff $H(i(\kappa)) \subset M$ We may assume $M = \{i(f)(a) \mid f : H(\kappa) \to V, a \in H(i(\kappa))\}$ Hyperstrong iff $H(i(\kappa)^+) \subset M$ We may assume $M = \{i(f)(a) \mid f : H(\kappa^+) \to V, a \in H(i(\kappa)^+)\}$ n+1-superstrong iff $H(j^{n+1}(\kappa)) \subset M$ We may assume M = $\{j(f)(a) \mid f: H(j(\kappa)^{+n}) \to V, a \in H(j^{n+1}(\kappa))\}$ ω -superstrong iff $H(j^{\omega}(\kappa)) \subset M$ We may assume $M = \{j(f)(a) \mid f : H(j^{\omega}(\kappa)) \to V, a \in H(j^{\omega}(\kappa))\}$

Forcing GCH

Forcing GCH We simply iterate α^+ -Cohen for regular α

Forcing GCH We simply iterate α^+ -Cohen for regular α ω_1 -Cohen forces CH, collapses 2^{\aleph_0} to ω_1

Forcing GCH We simply iterate α^+ -Cohen for regular α ω_1 -Cohen forces CH, collapses 2^{\aleph_0} to ω_1 Then ω_2 -Cohen forces GCH at ω_1 , collapses 2^{ω_1} to ω_2

Forcing GCH We simply iterate α^+ -Cohen for regular α ω_1 -Cohen forces CH, collapses 2^{\aleph_0} to ω_1 Then ω_2 -Cohen forces GCH at ω_1 , collapses 2^{ω_1} to ω_2 Etc.

Forcing GCH We simply iterate α^+ -Cohen for regular α ω_1 -Cohen forces CH, collapses 2^{\aleph_0} to ω_1 Then ω_2 -Cohen forces GCH at ω_1 , collapses 2^{ω_1} to ω_2 Etc.

Preserving a superstrong: Want a lifting of $j: V \rightarrow M$ to

Forcing GCH We simply iterate α^+ -Cohen for regular α ω_1 -Cohen forces CH, collapses 2^{\aleph_0} to ω_1 Then ω_2 -Cohen forces GCH at ω_1 , collapses 2^{ω_1} to ω_2 Etc.

Preserving a superstrong: Want a lifting of $j: V \to M$ to $j^*: V[G(<\kappa) * G[\kappa, \infty)] \to M[G^*(<\kappa) * G^*[\kappa, j(\kappa)) * G^*[j(\kappa), \infty)]$

Forcing GCH

We simply iterate $lpha^+$ -Cohen for regular lpha

 ω_1 -Cohen forces CH, collapses 2^{\aleph_0} to ω_1 Then ω_2 -Cohen forces GCH at ω_1 , collapses 2^{ω_1} to ω_2 Etc.

Preserving a superstrong: Want a lifting of $j: V \to M$ to $j^*: V[G(<\kappa) * G[\kappa, \infty)] \to$ $M[G^*(<\kappa) * G^*[\kappa, j(\kappa)) * G^*[j(\kappa), \infty)]$ The forcings P (to add G) and $P^* = j(P)$ (to add G^*) agree strictly below $j(\kappa)$ since $j: V \to M$ is superstrong;

Forcing GCH

We simply iterate $\alpha^+\text{-}\mathsf{Cohen}$ for regular α

 ω_1 -Cohen forces CH, collapses 2^{\aleph_0} to ω_1 Then ω_2 -Cohen forces GCH at ω_1 , collapses 2^{ω_1} to ω_2 Etc.

Preserving a superstrong: Want a lifting of $j: V \to M$ to $j^*: V[G(<\kappa) * G[\kappa, \infty)] \to$ $M[G^*(<\kappa) * G^*[\kappa, j(\kappa)) * G^*[j(\kappa), \infty)]$ The forcings P (to add G) and $P^* = j(P)$ (to add G^*) agree strictly below $j(\kappa)$ since $j: V \to M$ is superstrong; but they may take different limits at $j(\kappa)$: $P^*(< j(\kappa)) = \text{DirLim of } P^*(<\alpha), \ \alpha < j(\kappa)$ $P(< j(\kappa)) = \text{InvLim of } P(<\alpha), \ \alpha < j(\kappa), \text{ if } j(\kappa) \text{ singular}$

Forcing GCH

We simply iterate $\alpha^+\text{-}\mathsf{Cohen}$ for regular α

 ω_1 -Cohen forces CH, collapses 2^{\aleph_0} to ω_1 Then ω_2 -Cohen forces GCH at ω_1 , collapses 2^{ω_1} to ω_2 Etc.

Preserving a superstrong: Want a lifting of $j: V \to M$ to $j^*: V[G(<\kappa) * G[\kappa, \infty)] \to$ $M[G^*(<\kappa) * G^*[\kappa, j(\kappa)) * G^*[j(\kappa), \infty)]$ The forcings P (to add G) and $P^* = j(P)$ (to add G^*) agree strictly below $j(\kappa)$ since $j: V \to M$ is superstrong; but they may take different limits at $j(\kappa)$: $P^*(< j(\kappa)) = \text{DirLim of } P^*(<\alpha), \alpha < j(\kappa)$ $P(< j(\kappa)) = \text{InvLim of } P(<\alpha), \alpha < j(\kappa), \text{ if } j(\kappa) \text{ singular } (???)$

Fact: If $j: V \to M$ is superstrong with $j(\kappa)$ least then $j(\kappa)$ has cofinality κ^+ .

Fact: If $j: V \to M$ is superstrong with $j(\kappa)$ least then $j(\kappa)$ has cofinality κ^+ .

So we have to deal with a singular $j(\kappa)$.

Fact: If $j: V \to M$ is superstrong with $j(\kappa)$ least then $j(\kappa)$ has cofinality κ^+ .

So we have to deal with a singular $j(\kappa)$.

But it is easy to show:

 $G(\langle j(\kappa)) \cap P^*(\langle j(\kappa))$ is generic over M for $P^*(\langle j(\kappa))$ so we can simply take this to be $G^*(\langle j(\kappa))$.

Fact: If $j: V \to M$ is superstrong with $j(\kappa)$ least then $j(\kappa)$ has cofinality κ^+ .

So we have to deal with a singular $j(\kappa)$.

But it is easy to show:

 $G(\langle j(\kappa)) \cap P^*(\langle j(\kappa))$ is generic over M for $P^*(\langle j(\kappa))$ so we can simply take this to be $G^*(\langle j(\kappa))$.

Now we are done, as $P[\kappa, \infty)$ is κ^+ -distributive and this implies that the image of $G[\kappa, \infty)$ generates a $P^*[j(\kappa), \infty)$ -generic

Preserving a Hyperstrong: Want a lifting of $j: V \rightarrow M$ to

Preserving a Hyperstrong: Want a lifting of $j: V \to M$ to $j^*: V[G(<\kappa) * G(\kappa) * G[\kappa^+, \infty)] \to M[G^*(<\kappa) * G^*[\kappa, j(\kappa)) * G^*(j(\kappa)) * G^*[j(\kappa)^+, \infty)]$

Preserving a Hyperstrong: Want a lifting of $j: V \to M$ to $j^*: V[G(<\kappa) * G(\kappa) * G[\kappa^+, \infty)] \to$ $M[G^*(<\kappa) * G^*[\kappa, j(\kappa)) * G^*(j(\kappa)) * G^*[j(\kappa)^+, \infty)]$ Now P and P^* agree up to $j(\kappa)$, so we would like to take $G^*(\leq j(\kappa))$ to be $G(\leq j(\kappa))$;

Preserving a Hyperstrong: Want a lifting of $j: V \to M$ to $j^*: V[G(<\kappa) * G(\kappa) * G[\kappa^+, \infty)] \to$ $M[G^*(<\kappa) * G^*[\kappa, j(\kappa)) * G^*(j(\kappa)) * G^*[j(\kappa)^+, \infty)]$ Now P and P^* agree up to $j(\kappa)$, so we would like to take $G^*(\leq j(\kappa))$ to be $G(\leq j(\kappa))$; we must however ensure that this contains $j[G(\leq \kappa)]$.

Preserving a Hyperstrong: Want a lifting of $j: V \to M$ to $j^*: V[G(<\kappa) * G(\kappa) * G[\kappa^+, \infty)] \to$ $M[G^*(<\kappa) * G^*[\kappa, j(\kappa)) * G^*(j(\kappa)) * G^*[j(\kappa)^+, \infty)]$ Now P and P^* agree up to $j(\kappa)$, so we would like to take $G^*(\leq j(\kappa))$ to be $G(\leq j(\kappa))$; we must however ensure that this contains $j[G(\leq \kappa)]$. We first lift j to $j': V[G(<\kappa)] \to M[G^*(< j(\kappa))]$ and then observe that $j'[G(\kappa)]$ has a greatest lower bound in the forcing $P^*(j(\kappa))$.

Preserving a Hyperstrong: Want a lifting of $j: V \rightarrow M$ to $j^*: V[G(<\kappa) * G(\kappa) * G[\kappa^+,\infty)] \rightarrow$ $M[G^*(<\kappa) * G^*[\kappa, j(\kappa)) * G^*(j(\kappa)) * G^*[j(\kappa)^+, \infty)]$ Now P and P^{*} agree up to $j(\kappa)$, so we would like to take $G^*(\leq i(\kappa))$ to be $G(\leq j(\kappa))$; we must however ensure that this contains $i[G(<\kappa)]$. We first lift *j* to $j' : V[G(<\kappa)] \to M[G^*(<j(\kappa))]$ and then observe that $i'[G(\kappa)]$ has a greatest lower bound in the forcing $P^*(j(\kappa))$. So we simply assume that $G(j(\kappa))$ was chosen below this greatest lower bound.

Preserving a Hyperstrong: Want a lifting of $j: V \rightarrow M$ to $j^*: V[G(<\kappa) * G(\kappa) * G[\kappa^+,\infty)] \rightarrow$ $M[G^*(<\kappa) * G^*[\kappa, j(\kappa)) * G^*(j(\kappa)) * G^*[j(\kappa)^+, \infty)]$ Now P and P^{*} agree up to $j(\kappa)$, so we would like to take $G^*(\leq i(\kappa))$ to be $G(\leq i(\kappa))$; we must however ensure that this contains $i[G(<\kappa)]$. We first lift *j* to $j' : V[G(<\kappa)] \to M[G^*(<j(\kappa))]$ and then observe that $j'[G(\kappa)]$ has a greatest lower bound in the forcing $P^*(j(\kappa))$. So we simply assume that $G(j(\kappa))$ was chosen below this greatest lower bound.

Finally in analogy to the superstrong case, the κ^{++} -distributivity of $P[\kappa^+,\infty)$ implies that the image of $G[\kappa^+,\infty)$ generates a $P^*[j(\kappa)^+,\infty)$ -generic.

Preserving a 2-superstrong: Want a lifting of $j: V \rightarrow M$ to

Preserving a 2-superstrong: Want a lifting of $j: V \to M$ to $j^*: V[G(<\kappa) * G[\kappa, j(\kappa)) * G[j(\kappa), \infty)] \to M[G^*(<\kappa) * G^*[\kappa, j^2(\kappa)) * G^*[j^2(\kappa), \infty)]$

Preserving a 2-superstrong: Want a lifting of $j: V \to M$ to $j^*: V[G(<\kappa) * G[\kappa, j(\kappa)) * G[j(\kappa), \infty)] \to$ $M[G^*(<\kappa) * G^*[\kappa, j^2(\kappa)) * G^*[j^2(\kappa), \infty)]$ This time P^* and P agree strictly below $j^2(\kappa)$, P^* takes a direct limit at $j^2(\kappa)$ and P possibly takes an inverse limit there, as $j^2(\kappa)$ may be singular.

Preserving a 2-superstrong: Want a lifting of $j: V \to M$ to $j^*: V[G(<\kappa) * G[\kappa, j(\kappa)) * G[j(\kappa), \infty)] \to$ $M[G^*(<\kappa) * G^*[\kappa, j^2(\kappa)) * G^*[j^2(\kappa), \infty)]$ This time P^* and P agree strictly below $j^2(\kappa)$, P^* takes a direct limit at $j^2(\kappa)$ and P possibly takes an inverse limit there, as $j^2(\kappa)$ may be singular. This singularity can occur:

Preserving a 2-superstrong: Want a lifting of $j: V \to M$ to $j^*: V[G(<\kappa) * G[\kappa, j(\kappa)) * G[j(\kappa), \infty)] \to$ $M[G^*(<\kappa) * G^*[\kappa, j^2(\kappa)) * G^*[j^2(\kappa), \infty)]$ This time P^* and P agree strictly below $j^2(\kappa)$, P^* takes a direct limit at $j^2(\kappa)$ and P possibly takes an inverse limit there, as $j^2(\kappa)$ may be singular. This singularity can occur: Fact: If $j: V \to M$ is 2-superstrong with $j^2(\kappa)$ least then j is continuous at $j(\kappa)$ and therefore $j^2(\kappa)$ has cofinality $j(\kappa)$.

Preserving a 2-superstrong: Want a lifting of $j: V \to M$ to $j^*: V[G(<\kappa) * G[\kappa, j(\kappa)) * G[j(\kappa), \infty)] \to$ $M[G^*(<\kappa) * G^*[\kappa, j^2(\kappa)) * G^*[j^2(\kappa), \infty)]$ This time P^* and P agree strictly below $j^2(\kappa)$, P^* takes a direct limit at $j^2(\kappa)$ and P possibly takes an inverse limit there, as $j^2(\kappa)$ may be singular. This singularity can occur: Fact: If $j: V \to M$ is 2-superstrong with $j^2(\kappa)$ least then j is continuous at $j(\kappa)$ and therefore $j^2(\kappa)$ has cofinality $j(\kappa)$. So as before we take $G^*(< j^2(\kappa))$ to be $G(< j^2(\kappa)) \cap P^*(< j^2(\kappa))$.

Preserving a 2-superstrong: Want a lifting of $j: V \rightarrow M$ to $j^*: V[G(<\kappa) * G[\kappa, j(\kappa)) * G[j(\kappa), \infty)] \rightarrow$ $M[G^*(<\kappa) * G^*[\kappa, j^2(\kappa)) * G^*[j^2(\kappa), \infty)]$ This time P^* and P agree strictly below $j^2(\kappa)$, P^* takes a direct limit at $j^2(\kappa)$ and P possibly takes an inverse limit there, as $j^2(\kappa)$ may be singular. This singularity can occur: Fact: If $j: V \to M$ is 2-superstrong with $j^2(\kappa)$ least then j is continuous at $j(\kappa)$ and therefore $j^2(\kappa)$ has cofinality $j(\kappa)$. So as before we take $G^*(\langle j^2(\kappa) \rangle)$ to be $G(\langle j^2(\kappa) \rangle) \cap P^*(\langle j^2(\kappa) \rangle)$. We can ensure that $j[G(< j(\kappa))]$ is contained in $G(< j^2(\kappa))$, as the former has a greatest lower bound in the forcing $P(\langle j^2(\kappa) \rangle)$.

Preserving a 2-superstrong: Want a lifting of $j: V \rightarrow M$ to $j^*: V[G(<\kappa) * G[\kappa, j(\kappa)) * G[j(\kappa), \infty)] \rightarrow$ $M[G^*(<\kappa) * G^*[\kappa, j^2(\kappa)) * G^*[j^2(\kappa), \infty)]$ This time P^* and P agree strictly below $j^2(\kappa)$, P^* takes a direct limit at $j^2(\kappa)$ and P possibly takes an inverse limit there, as $j^2(\kappa)$ may be singular. This singularity can occur: Fact: If $j: V \to M$ is 2-superstrong with $j^2(\kappa)$ least then j is continuous at $j(\kappa)$ and therefore $j^2(\kappa)$ has cofinality $j(\kappa)$. So as before we take $G^*(\langle j^2(\kappa) \rangle)$ to be $G(\langle j^2(\kappa) \rangle) \cap P^*(\langle j^2(\kappa) \rangle)$. We can ensure that $j[G(< j(\kappa))]$ is contained in $G(< j^2(\kappa))$, as the former has a greatest lower bound in the forcing $P(\langle j^2(\kappa) \rangle)$. And the $j(\kappa)^+$ -distributivity of $P[j(\kappa),\infty)$ implies that the image of $G[j(\kappa),\infty)$ generates a $P^*[j^2(\kappa),\infty)$ -generic.

Finally, for the ω -superstrong case we choose $G(\langle j^{\omega}(\kappa) \rangle)$ to contain a condition forcing $j[G(\langle j^{n}(\kappa) \rangle)] \subseteq G(\langle j^{n+1}(\kappa) \rangle)$ for each n, and show:

Claim. $G(\langle j^{\omega}(\kappa)) \cap P^*(\langle j^{\omega}(\kappa))$ is $P^*(\langle j^{\omega}(\kappa))$ -generic over M.

Finally, for the ω -superstrong case we choose $G(< j^{\omega}(\kappa))$ to contain a condition forcing $j[G(< j^{n}(\kappa))] \subseteq G(< j^{n+1}(\kappa))$ for each n, and show:

Claim. $G(\langle j^{\omega}(\kappa) \rangle) \cap P^*(\langle j^{\omega}(\kappa) \rangle)$ is $P^*(\langle j^{\omega}(\kappa) \rangle)$ -generic over M. The proof of the Claim uses an argument regarding the "reduction" of dense sets.

Large Cardinals and L-like Universes: Definable Wellorders

Forcing Definable Wellorders

Forcing Definable Wellorders

We have:

Forcing Definable Wellorders

We have:

Lemma

(Asperó-F) Preserving a proper class of ω -superstrongs it is possible to force GCH together with a wellorder of V whose restriction to $H(\kappa^+)$ is definable over $H(\kappa^+)$ for uncountable regular κ , uniformly.

Forcing Definable Wellorders

We have:

Lemma

(Asperó-F) Preserving a proper class of ω -superstrongs it is possible to force GCH together with a wellorder of V whose restriction to $H(\kappa^+)$ is definable over $H(\kappa^+)$ for uncountable regular κ , uniformly.

Thus one gets a wellorder of $H(\aleph_{\omega+1})$ which is only definable over $H(\aleph_{\omega+2})$, not over $H(\aleph_{\omega+1})$, as one might hope.

Forcing Definable Wellorders

We have:

Lemma

(Asperó-F) Preserving a proper class of ω -superstrongs it is possible to force GCH together with a wellorder of V whose restriction to $H(\kappa^+)$ is definable over $H(\kappa^+)$ for uncountable regular κ , uniformly.

Thus one gets a wellorder of $H(\aleph_{\omega+1})$ which is only definable over $H(\aleph_{\omega+2})$, not over $H(\aleph_{\omega+1})$, as one might hope. This gives a nice open problem:

Forcing Definable Wellorders

We have:

Lemma

(Asperó-F) Preserving a proper class of ω -superstrongs it is possible to force GCH together with a wellorder of V whose restriction to $H(\kappa^+)$ is definable over $H(\kappa^+)$ for uncountable regular κ , uniformly.

Thus one gets a wellorder of $H(\aleph_{\omega+1})$ which is only definable over $H(\aleph_{\omega+2})$, not over $H(\aleph_{\omega+1})$, as one might hope. This gives a nice open problem:

Question: With set-forcing, can one always add a definable wellorder of $H(\aleph_{\omega+1})$?

Note: One cannot expect to force a definable wellorder of $H(\omega_1)$; this is not possible if there is a proper class of Woodin cardinals, for example, as then Projective Determinacy holds in all set-generic extensions.

Note: One cannot expect to force a definable wellorder of $H(\omega_1)$; this is not possible if there is a proper class of Woodin cardinals, for example, as then Projective Determinacy holds in all set-generic extensions.

Another note: It is definitely not always possible to force a definable wellorder of $H(\lambda^+)$ for singular λ :

Note: One cannot expect to force a definable wellorder of $H(\omega_1)$; this is not possible if there is a proper class of Woodin cardinals, for example, as then Projective Determinacy holds in all set-generic extensions.

Another note: It is definitely not always possible to force a definable wellorder of $H(\lambda^+)$ for singular λ : This is contradicted by an elementary embedding from $L[H(\lambda^+)]$ to itself with critical point less than λ , using Kunen's proof that there is no nontrivial elementary embedding of V to itself.

Forcing \diamondsuit

Forcing \diamondsuit

In this case we iterate $\alpha\text{-}\mathsf{Cohen}$ forcing for all regular $\alpha.$

Forcing \diamondsuit

In this case we iterate α -Cohen forcing for all regular α . It is easy to see that this forces \diamondsuit_{α} for all regular α and preserves cofinalities, GCH.

Forcing \diamondsuit

In this case we iterate α -Cohen forcing for all regular α . It is easy to see that this forces \diamondsuit_{α} for all regular α and preserves cofinalities, GCH.

Preserving a superstrong: We want to lift $j: V \rightarrow M$ to:

$$\begin{split} j^*: V[G(<\kappa) * G(\kappa) * G(\kappa, j(\kappa)) * G[j(\kappa), \infty)] \to \\ M[G^*(< j(\kappa)) * G^*(j(\kappa)) * G^*[j(\kappa)^+, \infty)] \end{split}$$

Forcing \diamondsuit

In this case we iterate $lpha ext{-} ext{Cohen}$ forcing for all regular lpha .

It is easy to see that this forces \diamondsuit_{α} for all regular α and preserves cofinalities, GCH.

Preserving a superstrong: We want to lift $j: V \rightarrow M$ to:

$$\begin{split} j^* : V[G(<\kappa) * G(\kappa) * G(\kappa, j(\kappa)) * G[j(\kappa), \infty)] \to \\ M[G^*(< j(\kappa)) * G^*(j(\kappa)) * G^*[j(\kappa)^+, \infty)] \end{split}$$

As before we can take $G^*(< j(\kappa))$ to be $G(< j(\kappa))$.

Forcing \diamondsuit

In this case we iterate α -Cohen forcing for all regular α .

It is easy to see that this forces \diamondsuit_α for all regular α and preserves cofinalities, GCH.

Preserving a superstrong: We want to lift $j: V \rightarrow M$ to:

$$\begin{split} j^* : V[G(<\kappa) * G(\kappa) * G(\kappa, j(\kappa)) * G[j(\kappa), \infty)] \to \\ M[G^*($$

As before we can take $G^*(< j(\kappa))$ to be $G(< j(\kappa))$. The new concern is:

How do we choose $G^*(j(\kappa))$?

Forcing \diamondsuit

In this case we iterate α -Cohen forcing for all regular α .

It is easy to see that this forces \diamondsuit_{α} for all regular α and preserves cofinalities, GCH.

Preserving a superstrong: We want to lift $j: V \rightarrow M$ to:

$$\begin{split} j^*: V[G(<\kappa) * G(\kappa) * G(\kappa, j(\kappa)) * G[j(\kappa), \infty)] \to \\ M[G^*(< j(\kappa)) * G^*(j(\kappa)) * G^*[j(\kappa)^+, \infty)] \end{split}$$

As before we can take $G^*(< j(\kappa))$ to be $G(< j(\kappa))$. The new concern is:

How do we choose $G^*(j(\kappa))$?

Note that we can't set $G^*(j(\kappa)) = G(j(\kappa))$ as $j(\kappa)$ is in general singular in V, so $G(j(\kappa))$ is not even defined!

The solution is to use a minimal $j(\kappa)$ (of cofinality κ^+):

The solution is to use a minimal $j(\kappa)$ (of cofinality κ^+): Each relevant dense D in M is of the form j(f)(a) for some $f : H(\kappa) \to H(\kappa^+)$, some $a \in H(j(\kappa))$.

The solution is to use a minimal $j(\kappa)$ (of cofinality κ^+): Each relevant dense D in M is of the form j(f)(a) for some $f : H(\kappa) \to H(\kappa^+)$, some $a \in H(j(\kappa))$. We choose:

The solution is to use a minimal $j(\kappa)$ (of cofinality κ^+): Each relevant dense D in M is of the form j(f)(a) for some $f : H(\kappa) \to H(\kappa^+)$, some $a \in H(j(\kappa))$. We choose:

 $lpha_{\mathsf{0}} < lpha_{\mathsf{1}} < \cdots$ cofinal in $j(\kappa)$ of length κ^+

The solution is to use a minimal $j(\kappa)$ (of cofinality κ^+): Each relevant dense D in M is of the form j(f)(a) for some $f: H(\kappa) \to H(\kappa^+)$, some $a \in H(j(\kappa))$. We choose: $\alpha_0 < \alpha_1 < \cdots$ cofinal in $j(\kappa)$ of length κ^+ A list f_0, f_1, \ldots of all relevant f's.

The solution is to use a minimal $j(\kappa)$ (of cofinality κ^+): Each relevant dense D in M is of the form j(f)(a) for some $f: H(\kappa) \to H(\kappa^+)$, some $a \in H(j(\kappa))$. We choose: $\alpha_0 < \alpha_1 < \cdots$ cofinal in $j(\kappa)$ of length κ^+ A list f_0, f_1, \ldots of all relevant f's. Then for each $i < \kappa^+$ consider the collection $S_i = \{D \mid D \text{ is dense and of the form } j(f_i)(a) \text{ for some } a \in H(\alpha_i^+)\}$

The solution is to use a minimal $j(\kappa)$ (of cofinality κ^+): Each relevant dense D in M is of the form j(f)(a) for some $f: H(\kappa) \to H(\kappa^+)$, some $a \in H(j(\kappa))$. We choose: $\alpha_0 < \alpha_1 < \cdots$ cofinal in $j(\kappa)$ of length κ^+ A list f_0, f_1, \ldots of all relevant f's. Then for each $i < \kappa^+$ consider the collection $S_i = \{D \mid D \text{ is dense and of the form } j(f_i)(a) \text{ for some } a \in H(\alpha_i^+)\}$ Each S_i has size $< j(\kappa)$ and $P^*(j(\kappa))$ is $j(\kappa)$ -distributive.

The solution is to use a minimal $i(\kappa)$ (of cofinality κ^+): Each relevant dense D in M is of the form j(f)(a) for some $f: H(\kappa) \to H(\kappa^+)$, some $a \in H(i(\kappa))$. We choose $\alpha_0 < \alpha_1 < \cdots$ cofinal in $j(\kappa)$ of length κ^+ A list f_0, f_1, \ldots of all relevant f's. Then for each $i < \kappa^+$ consider the collection $S_i = \{D \mid D \text{ is dense and of the form } j(f_i)(a) \text{ for some } a \in H(\alpha_i^+)\}$ Each S_i has size $\langle i(\kappa) \rangle$ and $P^*(i(\kappa))$ is $i(\kappa)$ -distributive. Also M is κ -closed in V.

The solution is to use a minimal $j(\kappa)$ (of cofinality κ^+):

Each relevant dense D in M is of the form j(f)(a) for some $f : H(\kappa) \to H(\kappa^+)$, some $a \in H(j(\kappa))$. We choose:

 $lpha_{0} < lpha_{1} < \cdots$ cofinal in $j(\kappa)$ of length κ^{+}

A list f_0, f_1, \ldots of all relevant f's.

Then for each $i < \kappa^+$ consider the collection

 $S_i = \{D \mid D \text{ is dense and of the form } j(f_i)(a) \text{ for some } a \in H(\alpha_i^+)\}$ Each S_i has size $< j(\kappa)$ and $P^*(j(\kappa))$ is $j(\kappa)$ -distributive. Also M is κ -closed in V. So we can build a $P^*(j(\kappa))$ -generic in κ^+ steps, hitting the dense sets in S_i at step i.

Preserving Hyperstrength: This is easier, as $P^*(j(\kappa))$ now equals $P(j(\kappa))$.

Preserving Hyperstrength: This is easier, as $P^*(j(\kappa))$ now equals $P(j(\kappa))$. One only needs to guarantee that the image of $G(\kappa) * G(\kappa^+)$] is contained in $G^*(j(\kappa)) * G^*(j(\kappa)^+)$, which is possible as this image has a greatest lower bound in the forcing $P^*(j(\kappa)) * P^*(j(\kappa)^+)$.

Preserving Hyperstrength: This is easier, as $P^*(j(\kappa))$ now equals $P(j(\kappa))$.

One only needs to guarantee that the image of $G(\kappa) * G(\kappa^+)$] is contained in $G^*(j(\kappa)) * G^*(j(\kappa)^+)$, which is possible as this image has a greatest lower bound in the forcing $P^*(j(\kappa)) * P^*(j(\kappa)^+)$.

Preserving 2-superstrength: The new task here is to build $G^*(j^2(\kappa))$.

Preserving Hyperstrength: This is easier, as $P^*(j(\kappa))$ now equals $P(j(\kappa))$.

One only needs to guarantee that the image of $G(\kappa) * G(\kappa^+)$] is contained in $G^*(j(\kappa)) * G^*(j(\kappa)^+)$, which is possible as this image has a greatest lower bound in the forcing $P^*(j(\kappa)) * P^*(j(\kappa)^+)$.

Preserving 2-superstrength: The new task here is to build $G^*(j^2(\kappa))$.

As observed before, for a minimal $j^2(\kappa)$, j is continuous at $j(\kappa)$;

Preserving Hyperstrength: This is easier, as $P^*(j(\kappa))$ now equals $P(j(\kappa))$.

One only needs to guarantee that the image of $G(\kappa) * G(\kappa^+)$] is contained in $G^*(j(\kappa)) * G^*(j(\kappa)^+)$, which is possible as this image has a greatest lower bound in the forcing $P^*(j(\kappa)) * P^*(j(\kappa)^+)$.

Preserving 2-superstrength: The new task here is to build $G^*(j^2(\kappa))$.

As observed before, for a minimal $j^2(\kappa)$, j is continuous at $j(\kappa)$; from this it follows using the $j(\kappa)$ -distributivity of $P(j(\kappa))$ that the image of $G(j(\kappa))$ will in fact generate the desired generic $G^*(j^2(\kappa))$.

Preserving Hyperstrength: This is easier, as $P^*(j(\kappa))$ now equals $P(j(\kappa))$.

One only needs to guarantee that the image of $G(\kappa) * G(\kappa^+)$] is contained in $G^*(j(\kappa)) * G^*(j(\kappa)^+)$, which is possible as this image has a greatest lower bound in the forcing $P^*(j(\kappa)) * P^*(j(\kappa)^+)$.

Preserving 2-superstrength: The new task here is to build $G^*(j^2(\kappa))$.

As observed before, for a minimal $j^2(\kappa)$, j is continuous at $j(\kappa)$; from this it follows using the $j(\kappa)$ -distributivity of $P(j(\kappa))$ that the image of $G(j(\kappa))$ will in fact generate the desired generic $G^*(j^2(\kappa))$.

Forcing 🗆

 \Box asserts that one can assign CUB subsets C_{α} of ordertype $< \alpha$ to singular limit ordinals α which cohere: If $\bar{\alpha}$ is a limit point of C_{α} then $C_{\bar{\alpha}}$ is just an initial segment of C_{α} .

Forcing \Box

 \Box asserts that one can assign CUB subsets C_{α} of ordertype $< \alpha$ to singular limit ordinals α which cohere: If $\bar{\alpha}$ is a limit point of C_{α} then $C_{\bar{\alpha}}$ is just an initial segment of C_{α} . Global \Box is the conjunction of two weaker properties:

Forcing \Box

 \Box asserts that one can assign CUB subsets C_{α} of ordertype $< \alpha$ to singular limit ordinals α which cohere: If $\bar{\alpha}$ is a limit point of C_{α} then $C_{\bar{\alpha}}$ is just an initial segment of C_{α} . Global \Box is the conjunction of two weaker properties:

 \Box on the Singular Cardinals: This is \Box where C_{α} is only defined for singular *cardinals* α .

Forcing \Box

 \Box asserts that one can assign CUB subsets C_{α} of ordertype $< \alpha$ to singular limit ordinals α which cohere: If $\bar{\alpha}$ is a limit point of C_{α} then $C_{\bar{\alpha}}$ is just an initial segment of C_{α} . Global \Box is the conjunction of two weaker properties:

 \Box on the Singular Cardinals: This is \Box where C_{α} is only defined for singular *cardinals* α .

 \Box_{κ} for all (uncountable cardinals) κ , where \Box_{κ} is \Box restricted to ordinals between κ and κ^+ .

Forcing \Box

 \Box asserts that one can assign CUB subsets C_{α} of ordertype $< \alpha$ to singular limit ordinals α which cohere: If $\bar{\alpha}$ is a limit point of C_{α} then $C_{\bar{\alpha}}$ is just an initial segment of C_{α} . Global \Box is the conjunction of two weaker properties:

 \Box on the Singular Cardinals: This is \Box where C_{α} is only defined for singular *cardinals* α .

 \Box_{κ} for all (uncountable cardinals) κ , where \Box_{κ} is \Box restricted to ordinals between κ and κ^+ .

Forcing
, preserving superstrength:

Forcing \Box

 \Box asserts that one can assign CUB subsets C_{α} of ordertype $< \alpha$ to singular limit ordinals α which cohere: If $\bar{\alpha}$ is a limit point of C_{α} then $C_{\bar{\alpha}}$ is just an initial segment of C_{α} . Global \Box is the conjunction of two weaker properties:

 \Box on the Singular Cardinals: This is \Box where C_{α} is only defined for singular *cardinals* α .

 \Box_{κ} for all (uncountable cardinals) κ , where \Box_{κ} is \Box restricted to ordinals between κ and κ^+ .

Forcing \Box , preserving superstrength: Very similar to forcing \Diamond .

Forcing \Box

 \Box asserts that one can assign CUB subsets C_{α} of ordertype $< \alpha$ to singular limit ordinals α which cohere: If $\bar{\alpha}$ is a limit point of C_{α} then $C_{\bar{\alpha}}$ is just an initial segment of C_{α} . Global \Box is the conjunction of two weaker properties:

 \Box on the Singular Cardinals: This is \Box where C_{α} is only defined for singular *cardinals* α .

 \Box_{κ} for all (uncountable cardinals) κ , where \Box_{κ} is \Box restricted to ordinals between κ and κ^+ .

Forcing
, preserving superstrength:

Very similar to forcing \diamondsuit . At regular stage α force \Box below α in the natural way.

Forcing \Box

 \Box asserts that one can assign CUB subsets C_{α} of ordertype $< \alpha$ to singular limit ordinals α which cohere: If $\bar{\alpha}$ is a limit point of C_{α} then $C_{\bar{\alpha}}$ is just an initial segment of C_{α} .

Global \square is the conjunction of two weaker properties:

 \Box on the Singular Cardinals: This is \Box where C_{α} is only defined for singular *cardinals* α .

 \Box_{κ} for all (uncountable cardinals) κ , where \Box_{κ} is \Box restricted to ordinals between κ and κ^+ .

Forcing
, preserving superstrength:

Very similar to forcing \diamondsuit . At regular stage α force \Box below α in the natural way. The main problem is to build $C(j(\kappa))$, as $j(\kappa)$ can be singular.

Forcing \Box

 \Box asserts that one can assign CUB subsets C_{α} of ordertype $< \alpha$ to singular limit ordinals α which cohere: If $\bar{\alpha}$ is a limit point of C_{α} then $C_{\bar{\alpha}}$ is just an initial segment of C_{α} .

Global \Box is the conjunction of two weaker properties:

 \Box on the Singular Cardinals: This is \Box where C_{α} is only defined for singular *cardinals* α .

 \Box_{κ} for all (uncountable cardinals) κ , where \Box_{κ} is \Box restricted to ordinals between κ and κ^+ .

Forcing
, preserving superstrength:

Very similar to forcing \diamondsuit . At regular stage α force \Box below α in the natural way. The main problem is to build $C(j(\kappa))$, as $j(\kappa)$ can be singular. Again the trick is to minimise $j(\kappa)$ so that it will have cofinality κ^+ , enabling a construction of $C(j(\kappa))$ in κ^+ steps.

But now something unexpected happens: Solovay (later improved by Jensen) showed that

contradicts large cardinals!

But now something unexpected happens: Solovay (later improved by Jensen) showed that \Box contradicts large cardinals! A weakening of Jensen's result can be stated as follows:

But now something unexpected happens: Solovay (later improved by Jensen) showed that \Box contradicts large cardinals! A weakening of Jensen's result can be stated as follows:

Lemma

(Jensen) If κ is hyperstrong then \Box_{κ} fails.

But now something unexpected happens: Solovay (later improved by Jensen) showed that \Box contradicts large cardinals! A weakening of Jensen's result can be stated as follows:

Lemma

(Jensen) If κ is hyperstrong then \Box_{κ} fails.

Jensen's argument is essentially that if \vec{C} witnesses \Box_{κ} and $j: V \to M$ witnesses hyperstrength, then there is a problem with the $\Box_{j(\kappa)}$ -sequence $j(\vec{C})$ in M at the ordinal $\alpha = \sup \pi[\kappa^+]$.

In fact Jensen shows that \Box_{κ} fails for all κ which are *subcompact*, a property weaker than hyperstrength.

In fact Jensen shows that \Box_{κ} fails for all κ which are subcompact, a property weaker than hyperstrength. κ is subcompact iff for any $A \subseteq H(\kappa^+)$ there are $\bar{\kappa} < \kappa$, $\bar{A} \subseteq H(\bar{\kappa})$ and an elementary embedding $\pi : (H(\bar{\kappa}^+), \bar{A}) \to (H(\kappa^+), A)$ with critical point $\bar{\kappa}$.

In fact Jensen shows that \Box_{κ} fails for all κ which are subcompact, a property weaker than hyperstrength. κ is subcompact iff for any $A \subseteq H(\kappa^+)$ there are $\bar{\kappa} < \kappa$, $\bar{A} \subseteq H(\bar{\kappa})$ and an elementary embedding $\pi : (H(\bar{\kappa}^+), \bar{A}) \to (H(\kappa^+), A)$ with critical point $\bar{\kappa}$. More generally, we can define *n*-subcompact in the same way, with κ^+ , $\bar{\kappa}^+$ replaced by κ^{+n} , $\bar{\kappa}^{+n}$.

In fact Jensen shows that \Box_{κ} fails for all κ which are subcompact, a property weaker than hyperstrength. κ is subcompact iff for any $A \subseteq H(\kappa^+)$ there are $\bar{\kappa} < \kappa$, $\bar{A} \subseteq H(\bar{\kappa})$ and an elementary embedding $\pi : (H(\bar{\kappa}^+), \bar{A}) \to (H(\kappa^+), A)$ with critical point $\bar{\kappa}$. More generally, we can define *n*-subcompact in the same way, with κ^+ , $\bar{\kappa}^+$ replaced by κ^{+n} , $\bar{\kappa}^{+n}$. I conjecture that Jensen's result is optimal:

In fact Jensen shows that \Box_{κ} fails for all κ which are subcompact, a property weaker than hyperstrength. κ is subcompact iff for any $A \subseteq H(\kappa^+)$ there are $\bar{\kappa} < \kappa, \ \bar{A} \subseteq H(\bar{\kappa})$ and an elementary embedding $\pi : (H(\bar{\kappa}^+), \bar{A}) \to (H(\kappa^+), A)$ with critical point $\bar{\kappa}$. More generally, we can define *n*-subcompact in the same way, with $\kappa^+, \ \bar{\kappa}^+$ replaced by $\kappa^{+n}, \ \bar{\kappa}^{+n}$. I conjecture that Jensen's result is optimal:

Conjecture. There is a forcing that preserves *n*-subcompactness for all *n* such that in the extension, \Box_{α} holds unless α is of the form κ^{+n} where κ is n + 1-subcompact.

In fact Jensen shows that \Box_{κ} fails for all κ which are subcompact, a property weaker than hyperstrength. κ is subcompact iff for any $A \subseteq H(\kappa^+)$ there are $\bar{\kappa} < \kappa, \ \bar{A} \subseteq H(\bar{\kappa})$ and an elementary embedding $\pi : (H(\bar{\kappa}^+), \bar{A}) \to (H(\kappa^+), A)$ with critical point $\bar{\kappa}$. More generally, we can define *n*-subcompact in the same way, with $\kappa^+, \ \bar{\kappa}^+$ replaced by $\kappa^{+n}, \ \bar{\kappa}^{+n}$. I conjecture that Jensen's result is optimal:

Conjecture. There is a forcing that preserves *n*-subcompactness for all *n* such that in the extension, \Box_{α} holds unless α is of the form κ^{+n} where κ is n + 1-subcompact.

 \Box on the Singular Cardinals is also contradicted by large cardinals, but now the large cardinal strength is greater.

 \Box on the Singular Cardinals is also contradicted by large cardinals, but now the large cardinal strength is greater. $j: V \to M$ is *inaccessibly hyperstrong* iff $H(\lambda) \subseteq M$ for some inaccessible greater than κ ; we say *almost inaccessibly hyperstrong* if λ is only required to be inaccessible in M.

 \Box on the Singular Cardinals is also contradicted by large cardinals, but now the large cardinal strength is greater. $j: V \to M$ is *inaccessibly hyperstrong* iff $H(\lambda) \subseteq M$ for some inaccessible greater than κ ; we say *almost inaccessibly hyperstrong* if λ is only required to be inaccessible in M.

Theorem

(Cummings-F) (a) If κ is inaccessibly hyperstrong then \Box fails on the singular cardinals below κ .

 \Box on the Singular Cardinals is also contradicted by large cardinals, but now the large cardinal strength is greater. $j: V \to M$ is *inaccessibly hyperstrong* iff $H(\lambda) \subseteq M$ for some inaccessible greater than κ ; we say *almost inaccessibly hyperstrong* if λ is only required to be inaccessible in M.

Theorem

(Cummings-F) (a) If κ is inaccessibly hyperstrong then \Box fails on the singular cardinals below κ .

(b) One can force \Box on the singular cardinals preserving almost inaccessible hyperstrength.

Forcing Morasses

Forcing Morasses

The only work so far on forcing morasses in the presence of large cardinals is for the Gap 1 case.

Forcing Morasses

The only work so far on forcing morasses in the presence of large cardinals is for the Gap 1 case.

I showed that one can do this for a single ω -superstrong and with

A. Brooke-Taylor for all ω -superstrongs simultaneously.

Forcing Morasses

The only work so far on forcing morasses in the presence of large cardinals is for the Gap 1 case.

I showed that one can do this for a single $\omega\text{-superstrong}$ and with A. Brooke-Taylor for all $\omega\text{-superstrongs}$ simultaneously.

We also force *universal* morasses, which by an observation of Donder implies the consistency of "tree-like continuous scales" at very large cardinals.

Forcing Condensation

Forcing Condensation There are different formulations of Condensation.

Forcing Condensation

There are different formulations of Condensation. Club-Condensation, which holds in L, is very strong and contradicts the existence of an ω_1 -Erdős cardinal.

Forcing Condensation

There are different formulations of Condensation.

Club-Condensation, which holds in L, is very strong and contradicts the existence of an ω_1 -Erdős cardinal.

Stationary Condensation can be forced preserving ω -superstrongs.

Forcing Condensation

There are different formulations of Condensation.

Club-Condensation, which holds in L, is very strong and contradicts the existence of an ω_1 -Erdős cardinal.

Stationary Condensation can be forced preserving ω -superstrongs. Better is Strong Condensation, which holds in the known core models and can also be forced preserving ω -superstrength.

Forcing Condensation

There are different formulations of Condensation.

Club-Condensation, which holds in L, is very strong and contradicts the existence of an ω_1 -Erdős cardinal.

Stationary Condensation can be forced preserving ω -superstrongs. Better is Strong Condensation, which holds in the known core models and can also be forced preserving ω -superstrength. But the best of all is Strong Condensation with Acceptability, which better captures the condensation properties of core models.

Forcing Condensation

There are different formulations of Condensation.

Club-Condensation, which holds in L, is very strong and contradicts the existence of an ω_1 -Erdős cardinal.

Stationary Condensation can be forced preserving ω -superstrongs. Better is Strong Condensation, which holds in the known core models and can also be forced preserving ω -superstrength. But the best of all is Strong Condensation with Acceptability, which better captures the condensation properties of core models. Peter Holy and I show that one can force this preserving ω -superstrongs; this is especially important when combined with some work of Neeman-Schimmerling:

(Neeman-Schimmerling) Given a Σ_1^2 indescribable 1-Gap the Proper Forcing Axiom for c^+ linked forcings holds in a proper forcing extension

(Neeman-Schimmerling) Given a Σ_1^2 indescribable 1-Gap the Proper Forcing Axiom for c^+ linked forcings holds in a proper forcing extension

The above hypothesis is between a subcompact and a 2-subcompact in strength.

(Neeman-Schimmerling) Given a Σ_1^2 indescribable 1-Gap the Proper Forcing Axiom for c^+ linked forcings holds in a proper forcing extension

The above hypothesis is between a subcompact and a 2-subcompact in strength.

(Neeman) The previous result is optimal if there is a "sufficiently L-like" model with a Σ_1^2 indescribable 1-Gap.

- (Neeman-Schimmerling) Given a Σ_1^2 indescribable 1-Gap the Proper Forcing Axiom for c^+ linked forcings holds in a proper forcing extension
- The above hypothesis is between a subcompact and a 2-subcompact in strength.
- (Neeman) The previous result is optimal if there is a "sufficiently L-like" model with a Σ_1^2 indescribable 1-Gap.
- (F-Holy) One can force a "sufficiently L-like" model with a Σ_1^2 indescribable 1-Gap.

- (Neeman-Schimmerling) Given a Σ_1^2 indescribable 1-Gap the Proper Forcing Axiom for c^+ linked forcings holds in a proper forcing extension
- The above hypothesis is between a subcompact and a 2-subcompact in strength.
- (Neeman) The previous result is optimal if there is a "sufficiently L-like" model with a Σ_1^2 indescribable 1-Gap.
- (F-Holy) One can force a "sufficiently L-like" model with a Σ_1^2 indescribable 1-Gap. Therefore:

(Neeman-Schimmerling) Given a Σ_1^2 indescribable 1-Gap the Proper Forcing Axiom for c^+ linked forcings holds in a proper forcing extension

The above hypothesis is between a subcompact and a 2-subcompact in strength.

(Neeman) The previous result is optimal if there is a "sufficiently L-like" model with a Σ_1^2 indescribable 1-Gap.

(F-Holy) One can force a "sufficiently L-like" model with a Σ_1^2 indescribable 1-Gap. Therefore:

(F-Holy) It is consistent with the existence of a proper class of subcompacts that the Proper Forcing Axiom for c^+ linked forcings fails in all proper set-forcing extensions.

(Neeman-Schimmerling) Given a Σ_1^2 indescribable 1-Gap the Proper Forcing Axiom for c^+ linked forcings holds in a proper forcing extension

The above hypothesis is between a subcompact and a 2-subcompact in strength.

(Neeman) The previous result is optimal if there is a "sufficiently L-like" model with a Σ_1^2 indescribable 1-Gap.

(F-Holy) One can force a "sufficiently L-like" model with a Σ_1^2 indescribable 1-Gap. Therefore:

(F-Holy) It is consistent with the existence of a proper class of subcompacts that the Proper Forcing Axiom for c^+ linked forcings fails in all proper set-forcing extensions.

This gives a "quasi lower bound" on the consistency strength of $PFA(c^+ \text{ linked})$.