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κ > ℵ0
κ is regular
λ < κ → 2λ < κ

κ inaessible implies Vκ is a model of ZFC
κ is measurable i�:
κ > ℵ0
∃ nonprinipal, κ-omplete ultra�lter on κ
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a, b, d, e, g, h, i, m, p, r, s, t, uat κ. Iterated foring with unountable supports. Foring ombinatorial priniples at a measurable (surprises withJensen's � Priniple)d. Singular ardinal problems (Prikry-type forings)
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κ+-distributivity, and therefore works better than κ-Cohen.
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Other appliationsSome other appliations of �fusion lifting�:(with Magidor) Assume GCH, let κ be measurable and let α be anyardinal at most κ++. Then there is a o�nality-preserving foringextension in whih there are exatly α normal measures on κ. If κ isH(κ++)-strong, then there is a o�nality-preserving foringextension in whih GCH fails at κ and there is a unique normalmeasure on κ.Uses variants of κ-Saks, tuning forks and nonstationary supportiterations.(with Dobrinen) Assume GCH and let κ be H(κ++)-strong. Thenthere is a foring extension in whih κ is still measurable and thetree property holds at κ++.Extends the tuning fork method form a κ-Saks produt to κ-Saksiteration (of length κ++).
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(with Honzìk) (Speial Case) Assume GCH and F is an Eastonfuntion suh that F ↾ κ is de�nable over H(F (κ)) uniformly for allregular κ. Then there is a o�nality-preserving foring extension inwhih 2γ = F (γ) for all regular γ and every κ whih isH(F (κ))-strong in the ground model remains measurable.Uses the tuning fork method and matries of onditions to lift anembedding.
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Cardinal harateristis at large ardinals
New area; we onsider three examples:

d(κ), CofSym(κ), s(κ)Generalised dominating number d(κ)Cummings and Shelah proved an Easton-type theorem for thefuntion κ 7→ d(κ). In partiular:
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Cardinal harateristis at large ardinalsTheorem(Cummings-Shelah) Assume GCH and κ regular. Then in ao�nality-preserving extension, κ+ = d(κ) < 2κ.Their proof goes as follows: First apply Cohen(κ, κ++) to make2κ = κ++. Then iterate κ-Hehler foring for κ+ steps, adding ateah step a funtion f : κ → κ whih eventually dominates allground model funtions. A ondition in κ-Hehler is a pair (s, f )wheres : |s| → κ, |s| < κf : κ → κ

(t, g) ≤ (s, f ) i� t ⊇ s, g dominates f , t dominates f on |t| \ |s|.This is κ-losed and κ+-.In the resulting model d(κ) = κ+.
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Cardinal harateristis at large ardinalsQuestion: Can one have d(κ) < 2κ for a measurable κ?Assume GCH, κ is H(κ++)-strong and j : V → M witnesses thelatter via an extender ultrapower.Strategy: Prepare up to κ using Cohen(α, α++) followed by an α+iteration of α-Hehler, and lift the embedding:V [CH(≤ κ)] → M[CH(< j(κ)) ∗ CH(j(κ))]Doesn't work!We already saw the problems with lifting for Cohen(κ, κ++); but
κ-Hehler presents even more serious di�ulties:
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{κ} and from this it follows that the j(f )(κ) for f : κ → κ areo�nal in j(κ). So h∗(κ) annot be de�ned!
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(Iteration of Saks(α, α++) below κ) ∗ Saks(κ, κ++).A foring is κκ bounding i� every funtion f : κ → κ that it adds isdominated by suh a funtion from the ground model. Any κ-foring is κκ bounding, and fusion shows that Saks(κ, κ++) is also
κκ bounding. It follows that the above iteration is κκ bounding andtherefore over a model of GCH fores d(κ) = κ+ < 2κ = κ++. Wesaw earlier that κ is measurable in the generi extension.
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b(κ) is the bounding number at κ, i.e., the smallest size of a subsetof κκ whih is not bounded in κκ under the order of eventualdomination.Question: Is it onsistent relative to a strong ardinal (i.e., aardinal κ whih is H(λ)-strong for all λ) to have a measurable κwith b(κ) = κ++?
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The Cardinal Charateristi CofSym(κ)Let κ be regular.Sym(κ) = group of permutations of κ under omposition.CofSym(κ) = least λ suh that Sym(κ) is the union of a stritlyinreasing λ-hain of subgroups.Mapherson and Neumann: CofSym(κ) > κ
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Cardinal harateristis at large ardinalsSharp and Thomas: For any regular κ, an fore CofSym(κ) to begreater than κ+.Theorem(F-Zdomskyy) Suppose that κ is H(κ++)-strong. Then in a foringextension, κ is measurable and CofSym(κ) = κ++.The Sharp-Thomas proof does not appear to work; instead one usesan iteration of Miller(κ) (a version of Miller foring at κ withontinuous lub-splitting) mixed with a variant of κ-Saks foring.It is another lifting argument using fusion.Question: Is it onsistent that CofSym(κ) = κ+++ for a measurable
κ?
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κ is inaessible i� s(κ) ≥ κ

κ is weakly ompat i� s(κ) > κRelative to a superompat, it is onsistent to have a measurable κwith s(κ) = κ++.(Zapletal) s(κ) > κ+ for an unountable regular κ requires an α ofMithell order α++ (slightly weaker than H(α++)-strong)Question: Can one obtain a measurable κ with s(κ) = κ++ from an
α whih is H(α++)-strong?
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Finally, for the ω-superstrong ase we hoose G (< jω(κ)) toontain a ondition foring j [G (< jn(κ))] ⊆ G (< jn+1(κ)) for eahn, and show:Claim. G (< jω(κ)) ∩ P∗(< jω(κ)) is P∗(< jω(κ))-generi over M.The proof of the Claim uses an argument regarding the �redution�of dense sets.
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Large Cardinals and L-like Universes: De�nable WellordersNote: One annot expet to fore a de�nable wellorder of H(ω1);this is not possible if there is a proper lass of Woodin ardinals, forexample, as then Projetive Determinay holds in all set-generiextensions.Another note: It is de�nitely not always possible to fore a de�nablewellorder of H(λ+) for singular λ:This is ontradited by an elementary embedding from L[H(λ+)] toitself with ritial point less than λ, using Kunen's proof that thereis no nontrivial elementary embedding of V to itself.
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Si = {D | D is dense and of the form j(fi)(a) for some a ∈ H(α+i )}Eah Si has size < j(κ) and P∗(j(κ)) is j(κ)-distributive.Also M is κ-losed in V .So we an build a P∗(j(κ))-generi in κ+ steps, hitting the densesets in Si at step i .
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�κ for all (unountable ardinals) κ, where �κ is � restrited toordinals between κ and κ+.Foring �, preserving superstrength:Very similar to foring ♦. At regular stage α fore � below α in thenatural way. The main problem is to build C (j(κ)), as j(κ) an besingular. Again the trik is to minimise j(κ) so that it will haveo�nality κ+, enabling a onstrution of C (j(κ)) in κ+ steps.
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Large Cardinals and L-like Universes: Foring �But now something unexpeted happens: Solovay (later improvedby Jensen) showed that � ontradits large ardinals!A weakening of Jensen's result an be stated as follows:Lemma(Jensen) If κ is hyperstrong then �κ fails.Jensen's argument is essentially that if ~C witnesses �κ andj : V → M witnesses hyperstrength, then there is a problem withthe �j(κ)-sequene j(~C) in M at the ordinal α = sup π[κ+].
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κ+, κ̄+ replaed by κ+n, κ̄+n.I onjeture that Jensen's result is optimal:



Large Cardinals and L-like Universes: Foring �In fat Jensen shows that �κ fails for all κ whih are subompat,a property weaker than hyperstrength. κ is subompat i� for anyA ⊆ H(κ+) there are κ̄ < κ, Ā ⊆ H(κ̄) and an elementaryembedding π : (H(κ̄+), Ā) → (H(κ+),A) with ritial point κ̄.More generally, we an de�ne n-subompat in the same way, with
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� on the Singular Cardinals is also ontradited by large ardinals,but now the large ardinal strength is greater.j : V → M is inaessibly hyperstrong i� H(λ) ⊆ M for someinaessible greater than κ; we say almost inaessibly hyperstrongif λ is only required to be inaessible in M.Theorem(Cummings-F) (a) If κ is inaessibly hyperstrong then � fails onthe singular ardinals below κ.(b) One an fore � on the singular ardinals preserving almostinaessible hyperstrength.
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Foring MorassesThe only work so far on foring morasses in the presene of largeardinals is for the Gap 1 ase.I showed that one an do this for a single ω-superstrong and withA. Brooke-Taylor for all ω-superstrongs simultaneously.We also fore universal morasses, whih by an observation ofDonder implies the onsisteny of �tree-like ontinuous sales� atvery large ardinals.
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Large Cardinals and L-like Universes: CondensationForing CondensationThere are di�erent formulations of Condensation.Club-Condensation, whih holds in L, is very strong and ontraditsthe existene of an ω1-Erd®s ardinal.Stationary Condensation an be fored preserving ω-superstrongs.Better is Strong Condensation, whih holds in the known oremodels and an also be fored preserving ω-superstrength.But the best of all is Strong Condensation with Aeptability, whihbetter aptures the ondensation properties of ore models.Peter Holy and I show that one an fore this preserving
ω-superstrongs; this is espeially important when ombined withsome work of Neeman-Shimmerling:
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