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lass satisfying ZFC, 
ontaining Ord)j : V → M is an embedding i�:j is not the identityj preserves the truth of formulas with parametersCriti
al point of j is the least κ, j(κ) 6= κIdea: κ is �large� i� κ is the 
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ondition is a fun
tion p : κ++ → κ-Sa
ks whi
h istrivial on all but κ many i < κ++.Prepare as before, iterating for κ + 1 steps, but with Sa
ks(α, α++)at ina

essible stages α ≤ κ. As before we obtain an embeddingj ′ : V [S(< κ)] → M[S∗(< j(κ))] (in V [S(≤ κ)])To extend j ′ further we want to �nd a generi
 S∗(j(κ)) for theSa
ks(j(κ), j(κ++) of M[S∗(< j(κ))] whi
h 
ontains j ′[S(κ)],where S(κ) is the Sa
ks(κ, κ++)-generi
, yielding:
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tion of the j(p)(i) is atuning fork bi0, bi1 : j(κ) → 2.For i < j(κ++) not in the range of j , the interse
tion of the j(p)(i)is a single bi : j(κ) → 2.And if for i < j(κ++) we take the bi0 for i in the range of j and thebi for i not in the range of j then we obtain aSa
ks(j(κ), j(κ++))-generi
. This generi
 
ontains j ′[S(κ)] by itsde�nition (and is almost generated by it).Con
lusion: The fusion property for κ-Sa
ks is a good substitute for
κ+-distributivity, and therefore works better than κ-Cohen.
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ks, tuning forks and nonstationary supportiterations.(with Dobrinen) Assume GCH and let κ be H(κ++)-strong. Thenthere is a for
ing extension in whi
h κ is still measurable and thetree property holds at κ++.Extends the tuning fork method form a κ-Sa
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t to κ-Sa
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ardinals
New area; we 
onsider three examples:

d(κ), CofSym(κ), s(κ)Generalised dominating number d(κ)Cummings and Shelah proved an Easton-type theorem for thefun
tion κ 7→ d(κ). In parti
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h step a fun
tion f : κ → κ whi
h eventually dominates allground model fun
tions. A 
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(t, g) ≤ (s, f ) i� t ⊇ s, g dominates f , t dominates f on |t| \ |s|.This is κ-
losed and κ+-

.In the resulting model d(κ) = κ+.
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ardinalsQuestion: Can one have d(κ) < 2κ for a measurable κ?Assume GCH, κ is H(κ++)-strong and j : V → M witnesses thelatter via an extender ultrapower.Strategy: Prepare up to κ using Cohen(α, α++) followed by an α+iteration of α-He
hler, and lift the embedding:V [CH(≤ κ)] → M[CH(< j(κ)) ∗ CH(j(κ))]Doesn't work!We already saw the problems with lifting for Cohen(κ, κ++); but
κ-He
hler presents even more serious di�
ulties:
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ular j(f )(κ) < h∗(κ).But we have seen that the interse
tion of the j(C ), C 
lub in κ is
{κ} and from this it follows that the j(f )(κ) for f : κ → κ are
o�nal in j(κ). So h∗(κ) 
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ing is κκ bounding, and fusion shows that Sa
ks(κ, κ++) is also
κκ bounding. It follows that the above iteration is κκ bounding andtherefore over a model of GCH for
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an be shown that the κ-Cohenwith κ-He
hler strategy does work, and indeed one 
an get κmeasurable with any reasonable values for d(κ), b(κ) and 2κ, where
b(κ) is the bounding number at κ, i.e., the smallest size of a subsetof κκ whi
h is not bounded in κκ under the order of eventualdomination.Question: Is it 
onsistent relative to a strong 
ardinal (i.e., a
ardinal κ whi
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e a de�nable wellorder of H(ω1);this is not possible if there is a proper 
lass of Woodin 
ardinals, forexample, as then Proje
tive Determina
y holds in all set-generi
extensions.Another note: It is de�nitely not always possible to for
e a de�nablewellorder of H(λ+) for singular λ:This is 
ontradi
ted by an elementary embedding from L[H(λ+)] toitself with 
riti
al point less than λ, using Kunen's proof that thereis no nontrivial elementary embedding of V to itself.
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an take G ∗(< j(κ)) to be G (< j(κ)).The new 
on
ern is:How do we 
hoose G ∗(j(κ))?Note that we 
an't set G ∗(j(κ)) = G (j(κ)) as j(κ) is in generalsingular in V , so G (j(κ)) is not even de�ned!
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h Si has size < j(κ) and P∗(j(κ)) is j(κ)-distributive.Also M is κ-
losed in V .So we 
an build a P∗(j(κ))-generi
 in κ+ steps, hitting the densesets in Si at step i .
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ted happens: Solovay (later improvedby Jensen) showed that � 
ontradi
ts large 
ardinals!A weakening of Jensen's result 
an be stated as follows:Lemma(Jensen) If κ is hyperstrong then �κ fails.Jensen's argument is essentially that if ~C witnesses �κ andj : V → M witnesses hyperstrength, then there is a problem withthe �j(κ)-sequen
e j(~C) in M at the ordinal α = sup π[κ+].
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ontinuous s
ales� atvery large 
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tsthe existen
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eptability, whi
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aptures the 
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an for
e this preserving
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ially important when 
ombined withsome work of Neeman-S
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+ linked).


